Suppr超能文献

经皮层脑机接口的手指运动神经控制。

Neural control of finger movement via intracortical brain-machine interface.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.

出版信息

J Neural Eng. 2017 Dec;14(6):066004. doi: 10.1088/1741-2552/aa80bd.

Abstract

OBJECTIVE

Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques.

APPROACH

In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex.

MAIN RESULTS

Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys' ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter.

SIGNIFICANCE

This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe that these results represent an important step towards full and dexterous control of neural prosthetic devices.

摘要

目的

皮质内脑机接口(BMI)是严重运动障碍患者假体控制信号的有前途的来源。以前的 BMI 研究主要集中在预测和控制整个手臂运动;然而,手运动学的精确控制尚未得到充分证明。在这里,我们研究了恒河猴精确手指运动的连续解码。

方法

为了引出精确和可重复的手指运动,我们开发了一种新的行为任务范式,要求受试者获取虚拟指尖位置目标。在物理控制条件下,四只恒河猴通过一起移动所有四个手指来执行此任务,以获取单个目标。这种运动相当于控制力抓握的开口。在此任务执行过程中,我们记录了来自初级运动皮层内皮质电极阵列的神经尖峰。

主要结果

使用标准卡尔曼滤波器,我们可以离线重建连续手指运动,四个恒河猴的平均相关系数ρ为 0.78。对于其中两只猴子,这种运动预测是实时进行的,以便直接用大脑控制虚拟手。与物理控制相比,神经控制性能略有下降;然而,猴子仍然能够成功地以 83.1%的平均目标获取率完成任务。通过信息吞吐量指标还量化了猴子任意指定指尖位置的能力。在大脑控制任务执行期间,猴子的平均吞吐量为 1.01 位 s,与使用标准卡尔曼滤波器解码上臂运动以控制计算机光标并在之前的研究中获得的吞吐量相似。

意义

据我们所知,这是大脑控制手指级精细运动技能的首次演示。我们相信,这些结果代表着朝着完全灵活的神经假体控制迈出的重要一步。

相似文献

1
Neural control of finger movement via intracortical brain-machine interface.
J Neural Eng. 2017 Dec;14(6):066004. doi: 10.1088/1741-2552/aa80bd.
2
Error detection and correction in intracortical brain-machine interfaces controlling two finger groups.
J Neural Eng. 2023 Aug 25;20(4):046037. doi: 10.1088/1741-2552/acef95.
3
Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
Neuron. 2021 Oct 6;109(19):3164-3177.e8. doi: 10.1016/j.neuron.2021.08.009. Epub 2021 Sep 8.
5
Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
J Neural Eng. 2013 Jun;10(3):036015. doi: 10.1088/1741-2560/10/3/036015. Epub 2013 Apr 23.
6
A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
J Neural Eng. 2015 Jun;12(3):036009. doi: 10.1088/1741-2560/12/3/036009. Epub 2015 May 6.
7
Closed-Loop Continuous Hand Control via Chronic Recording of Regenerative Peripheral Nerve Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2018 Feb;26(2):515-526. doi: 10.1109/TNSRE.2017.2772961.
8
Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex.
Neurosurgery. 2020 Sep 15;87(4):630-638. doi: 10.1093/neuros/nyaa026.
9
Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
Front Neurosci. 2018 Nov 5;12:751. doi: 10.3389/fnins.2018.00751. eCollection 2018.
10
Augmenting intracortical brain-machine interface with neurally driven error detectors.
J Neural Eng. 2017 Dec;14(6):066007. doi: 10.1088/1741-2552/aa8dc1.

引用本文的文献

2
On-demand electrically controlled melatonin release from PEDOT/SNP composite improves quality of chronic neural recording.
Front Bioeng Biotechnol. 2023 Nov 15;11:1284927. doi: 10.3389/fbioe.2023.1284927. eCollection 2023.
4
Differential expression of genes involved in the chronic response to intracortical microelectrodes.
Acta Biomater. 2023 Oct 1;169:348-362. doi: 10.1016/j.actbio.2023.07.038. Epub 2023 Jul 26.
6
Decoding and geometry of ten finger movements in human posterior parietal cortex and motor cortex.
J Neural Eng. 2023 May 25;20(3):036020. doi: 10.1088/1741-2552/acd3b1.
9
A Light-Tolerant Wireless Neural Recording IC for Motor Prediction With Near-Infrared-Based Power and Data Telemetry.
IEEE J Solid-State Circuits. 2022 Apr;57(4):1061-1074. doi: 10.1109/jssc.2022.3141688. Epub 2022 Jan 25.
10
High-density neural recording system design.
Biomed Eng Lett. 2022 May 30;12(3):251-261. doi: 10.1007/s13534-022-00233-z. eCollection 2022 Aug.

本文引用的文献

1
A four-dimensional virtual hand brain-machine interface using active dimension selection.
J Neural Eng. 2016 Jun;13(3):036021. doi: 10.1088/1741-2560/13/3/036021. Epub 2016 May 11.
2
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.
Sci Transl Med. 2015 Nov 11;7(313):313ra179. doi: 10.1126/scitranslmed.aac7328.
3
Clinical translation of a high-performance neural prosthesis.
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
4
Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study.
J Neural Eng. 2015 Oct;12(5):056016. doi: 10.1088/1741-2560/12/5/056016. Epub 2015 Sep 10.
6
Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations.
J Neural Eng. 2015 Feb;12(1):016011. doi: 10.1088/1741-2560/12/1/016011. Epub 2014 Dec 16.
7
Musculoskeletal representation of a large repertoire of hand grasping actions in primates.
IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):210-20. doi: 10.1109/TNSRE.2014.2364776. Epub 2014 Oct 24.
8
Performance measurement for brain-computer or brain-machine interfaces: a tutorial.
J Neural Eng. 2014 Jun;11(3):035001. doi: 10.1088/1741-2560/11/3/035001. Epub 2014 May 19.
9
A training platform for many-dimensional prosthetic devices using a virtual reality environment.
J Neurosci Methods. 2015 Apr 15;244:68-77. doi: 10.1016/j.jneumeth.2014.03.010. Epub 2014 Apr 13.
10
Primary motor cortical discharge during force field adaptation reflects muscle-like dynamics.
J Neurophysiol. 2013 Aug;110(3):768-83. doi: 10.1152/jn.00109.2012. Epub 2013 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验