Suppr超能文献

用于上肢神经假体的单个手指和手腕运动学的皮层解码。

Cortical decoding of individual finger and wrist kinematics for an upper-limb neuroprosthesis.

作者信息

Aggarwal Vikram, Tenore Francesco, Acharya Soumyadipta, Schieber Marc H, Thakor Nitish V

机构信息

Department of Biomedical Engineering at The Johns Hopkins University, Baltimore, MD, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4535-8. doi: 10.1109/IEMBS.2009.5334129.

Abstract

Previous research has shown that neuronal activity can be used to continuously decode the kinematics of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus monkey as they performed individuated movements of the fingers and wrist. The primates' hand was placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit's position. Both linear and non-linear filters were designed to simultaneously predict kinematics of each digit and the wrist, and their performance compared using mean squared error and correlation coefficients. All models had high decoding accuracy, but the feedforward ANN (R = 0.76-0.86, MSE = 0.04-0.05) and Kalman filter (R = 0.68-0.86, MSE = 0.04-0.07) performed better than a simple linear regression filter (0.58-0.81, 0.05-0.07). These results suggest that individual finger and wrist kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic hand in real-time.

摘要

先前的研究表明,神经元活动可用于持续解码涉及手臂和手部轨迹的粗大运动的运动学。然而,尚未证实能够解码精细运动的运动学,例如单个手指的操作。在本研究中,当两只经过训练的恒河猴执行手指和手腕的个体化运动时,从它们初级运动皮层(M1)中与任务相关的神经元记录了单单元活动。将灵长类动物的手放置在一个操作装置中,并使用每个手指尖端的应变仪来跟踪手指的位置。设计了线性和非线性滤波器以同时预测每个手指和手腕的运动学,并使用均方误差和相关系数比较它们的性能。所有模型都具有较高的解码准确率,但前馈人工神经网络(R = 0.76 - 0.86,MSE = 0.04 - 0.05)和卡尔曼滤波器(R = 0.68 - 0.86,MSE = 0.04 - 0.07)的表现优于简单线性回归滤波器(0.58 - 0.81,0.05 - 0.07)。这些结果表明,单个手指和手腕的运动学能够以高精度解码,并可用于实时控制多指假手。

相似文献

2
Asynchronous decoding of dexterous finger movements using M1 neurons.利用M1神经元对灵巧手指运动进行异步解码。
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14. doi: 10.1109/TNSRE.2007.916289.

引用本文的文献

4
Decoding Information for Grasping from the Macaque Dorsomedial Visual Stream.从猕猴背内侧视觉信息流中解码抓握信息
J Neurosci. 2017 Apr 19;37(16):4311-4322. doi: 10.1523/JNEUROSCI.3077-16.2017. Epub 2017 Mar 20.
5
Estimating Fast Neural Input Using Anatomical and Functional Connectivity.利用解剖学和功能连接性估计快速神经输入
Front Neural Circuits. 2016 Dec 20;10:99. doi: 10.3389/fncir.2016.00099. eCollection 2016.

本文引用的文献

2
Asynchronous decoding of dexterous finger movements using M1 neurons.利用M1神经元对灵巧手指运动进行异步解码。
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14. doi: 10.1109/TNSRE.2007.916289.
6
Instant neural control of a movement signal.运动信号的即时神经控制。
Nature. 2002 Mar 14;416(6877):141-2. doi: 10.1038/416141a.
8
Neuronal population coding of movement direction.运动方向的神经元群体编码
Science. 1986 Sep 26;233(4771):1416-9. doi: 10.1126/science.3749885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验