Suppr超能文献

基于系统性能和适用补偿策略对皮质内脑机接口信号中断进行分类:综述

Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review.

作者信息

Dunlap Collin F, Colachis Samuel C, Meyers Eric C, Bockbrader Marcia A, Friedenberg David A

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States.

Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States.

出版信息

Front Neurorobot. 2020 Oct 9;14:558987. doi: 10.3389/fnbot.2020.558987. eCollection 2020.

Abstract

Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.

摘要

脑机接口(BMI)记录神经活动并将其转化为控制信号,用于辅助设备或其他设备。皮层内微电极阵列(MEA)通过提供高分辨率神经记录,实现对复杂任务的高自由度BMI控制。然而,长期植入的MEA会处于动态环境中,短暂或系统性干扰可能会干扰神经记录并降低BMI性能。通常,神经植入失败模式可分为生物、材料或机械类。虽然这种分类有助于深入了解干扰的因果病因,但对于理解对BMI功能的影响程度或可能的补偿策略帮助较小。因此,我们提出了一种针对皮层内记录干扰的补充分类框架,该框架基于对BMI性能的影响持续时间以及干预的需求和响应性:(1)在数分钟到数小时的时间尺度上干扰记录,且可自发解决;(2)对记录造成持续干扰,但根本原因可通过适当干预得以纠正;(3)导致信号质量持续或逐渐下降,但其对BMI性能的影响可通过算法减轻;(4)导致永久性信号丢失,无法补救或补偿。这种皮层内BMI干扰类型的概念化有助于突出潜在硬件改进的特定领域,并识别算法干预的机会。我们回顾了已报道的MEA记录干扰情况,并展示了干扰生物、材料和机械机制如何根据其对信号特征的影响进一步分类。然后我们讨论了针对每种提出的干扰类别的潜在补偿协议。具体而言,短暂干扰可通过使用强大的神经解码器特征、数据增强方法、自适应机器学习模型和专门的信号参考技术来最小化。统计过程控制方法可识别可修复的干扰以便快速干预。诸如阻抗谱等诊断方法可为神经特征选择和解码模型提供信息,以补偿不可逆干扰。针对不可逆干扰的其他补偿策略包括信息挽救技术、解码器训练期间的数据增强以及降低受损通道权重的自适应解码方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/437b/7581895/b110b37eb91d/fnbot-14-558987-g0001.jpg

相似文献

3
Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
J Neural Eng. 2013 Dec;10(6):066014. doi: 10.1088/1741-2560/10/6/066014. Epub 2013 Nov 12.
4
Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
J Neural Eng. 2016 Apr;13(2):026003. doi: 10.1088/1741-2560/13/2/026003. Epub 2016 Jan 29.
5
Increasing Robustness of Brain-Computer Interfaces Through Automatic Detection and Removal of Corrupted Input Signals.
Front Neurosci. 2022 Apr 28;16:858377. doi: 10.3389/fnins.2022.858377. eCollection 2022.
6
Deployable, liquid crystal elastomer-based intracortical probes.
Acta Biomater. 2020 Jul 15;111:54-64. doi: 10.1016/j.actbio.2020.04.032. Epub 2020 May 17.
8
Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum.
Biomed Phys Eng Express. 2018 Sep;4(5). doi: 10.1088/2057-1976/aada67. Epub 2018 Aug 31.
9
Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
Acta Biomater. 2016 Mar 1;32:57-67. doi: 10.1016/j.actbio.2015.12.022. Epub 2015 Dec 12.
10
Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications.
Bioelectron Med. 2018 Jul 31;4:11. doi: 10.1186/s42234-018-0011-x. eCollection 2018.

引用本文的文献

3
In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies.
Micromachines (Basel). 2024 Feb 17;15(2):286. doi: 10.3390/mi15020286.
4
An Ultraflexible Electrode Array for Large-Scale Chronic Recording in the Nonhuman Primate Brain.
Adv Sci (Weinh). 2023 Nov;10(33):e2302333. doi: 10.1002/advs.202302333. Epub 2023 Oct 23.
5
Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity.
Annu Rev Biomed Eng. 2023 Jun 8;25:185-205. doi: 10.1146/annurev-bioeng-090622-050507.
6
Somatosensory ECoG-based brain-machine interface with electrical stimulation on medial forebrain bundle.
Biomed Eng Lett. 2022 Dec 20;13(1):85-95. doi: 10.1007/s13534-022-00256-6. eCollection 2023 Feb.
7
Increasing Robustness of Brain-Computer Interfaces Through Automatic Detection and Removal of Corrupted Input Signals.
Front Neurosci. 2022 Apr 28;16:858377. doi: 10.3389/fnins.2022.858377. eCollection 2022.
8
Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces.
Front Bioeng Biotechnol. 2021 Dec 7;9:759711. doi: 10.3389/fbioe.2021.759711. eCollection 2021.

本文引用的文献

1
Reducing the "Stress": Antioxidative Therapeutic and Material Approaches May Prevent Intracortical Microelectrode Failure.
ACS Macro Lett. 2015 Mar 17;4(3):275-279. doi: 10.1021/mz500743a. Epub 2015 Feb 13.
2
Neural stimulation and recording performance in human sensorimotor cortex over 1500 days.
J Neural Eng. 2021 Aug 13;18(4). doi: 10.1088/1741-2552/ac18ad.
3
Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface.
Cell. 2020 May 14;181(4):763-773.e12. doi: 10.1016/j.cell.2020.03.054. Epub 2020 Apr 23.
4
Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity.
Nat Biomed Eng. 2020 Jul;4(7):672-685. doi: 10.1038/s41551-020-0542-9. Epub 2020 Apr 20.
5
Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications.
Bioelectron Med. 2018 Jul 31;4:11. doi: 10.1186/s42234-018-0011-x. eCollection 2018.
6
Massively parallel microwire arrays integrated with CMOS chips for neural recording.
Sci Adv. 2020 Mar 20;6(12):eaay2789. doi: 10.1126/sciadv.aay2789. eCollection 2020 Mar.
7
Long-term stability of cortical population dynamics underlying consistent behavior.
Nat Neurosci. 2020 Feb;23(2):260-270. doi: 10.1038/s41593-019-0555-4. Epub 2020 Jan 6.
8
NLRP3 inflammasome activation drives tau pathology.
Nature. 2019 Nov;575(7784):669-673. doi: 10.1038/s41586-019-1769-z. Epub 2019 Nov 20.
10
Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform.
Adv Exp Med Biol. 2019;1101:1-40. doi: 10.1007/978-981-13-2050-7_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验