Suppr超能文献

CRISPR 系统——让斑马鱼基因靶向技术保持新鲜。

The CRISPR system--keeping zebrafish gene targeting fresh.

机构信息

Department of Biochemistry and Molecular Biology, Mayo Addiction Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

Zebrafish. 2013 Mar;10(1):116-8. doi: 10.1089/zeb.2013.9999. Epub 2013 Mar 28.

Abstract

We are entering a new era in our ability to modify and edit the genomes of model organisms. Zinc finger nucleases (ZFNs) opened the door to the first custom nuclease-targeted genome engineering in the late 1990s. However, ZFNs remained out of reach for most research labs because of the difficulty of production, high costs, and modest efficacy in many applications. Transcription activator-like effector nucleases (TALENs) were built upon a DNA binding system discovered in a group of plant bacterial pathogens and broadened custom nuclease technology, showing significant improvements in both targeting flexibility and efficiency. Perhaps most importantly, TALENs are open source and easy to produce, providing zebrafish laboratories around the world with affordable tools that can be made in-house rapidly, at low cost, and with reliably high activity. Now a new system for targeted genome engineering derived from the CRISPR/Cas system in eubacteria and archaea promises to simplify this process further. Together, these tools will help overcome many of the bottlenecks that have constrained gene targeting in zebrafish, paving the way for advanced genome engineering applications in this model teleost.

摘要

我们正进入一个能够修改和编辑模式生物基因组的新时代。锌指核酸酶 (ZFNs) 在 20 世纪 90 年代末开创了第一个定制核酸酶靶向基因组工程的先河。然而,由于生产难度大、成本高以及在许多应用中的效果有限,ZFNs 仍然遥不可及。转录激活因子样效应核酸酶 (TALENs) 建立在一组植物病原菌中发现的 DNA 结合系统之上,拓宽了定制核酸酶技术,在靶向灵活性和效率方面都有显著提高。也许最重要的是,TALENs 是开源的,易于生产,为世界各地的斑马鱼实验室提供了负担得起的工具,可以在内部快速、低成本、高活性地制作。现在,一种源自真细菌和古细菌的 CRISPR/Cas 系统的靶向基因组工程新系统有望进一步简化这一过程。这些工具将共同帮助克服限制斑马鱼基因靶向的许多瓶颈,为该模式硬骨鱼的高级基因组工程应用铺平道路。

相似文献

2
Understanding and Editing the Zebrafish Genome.理解与编辑斑马鱼基因组
Adv Genet. 2015;92:1-52. doi: 10.1016/bs.adgen.2015.09.002. Epub 2015 Nov 12.
3
Origins of Programmable Nucleases for Genome Engineering.用于基因组工程的可编程核酸酶的起源
J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89. doi: 10.1016/j.jmb.2015.10.014. Epub 2015 Oct 23.
6
CRISPR/Cas9: an advanced tool for editing plant genomes.CRISPR/Cas9:一种用于编辑植物基因组的先进工具。
Transgenic Res. 2016 Oct;25(5):561-73. doi: 10.1007/s11248-016-9953-5. Epub 2016 Mar 24.
7
Plant genome engineering in full bloom.植物基因组工程全面展开。
Trends Plant Sci. 2014 May;19(5):284-7. doi: 10.1016/j.tplants.2014.02.014. Epub 2014 Mar 24.
9
The CRISPR/Cas9 system for plant genome editing and beyond.CRISPR/Cas9 系统在植物基因组编辑中的应用及展望。
Biotechnol Adv. 2015 Jan-Feb;33(1):41-52. doi: 10.1016/j.biotechadv.2014.12.006. Epub 2014 Dec 20.

引用本文的文献

本文引用的文献

1
A sequence-based variation map of zebrafish.斑马鱼的基于序列的变异图谱。
Zebrafish. 2013 Mar;10(1):15-20. doi: 10.1089/zeb.2012.0848.
6
RNA-guided human genome engineering via Cas9.通过 Cas9 进行 RNA 引导的人类基因组工程。
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
8
In vivo genome editing using a high-efficiency TALEN system.利用高效 TALEN 系统进行体内基因组编辑。
Nature. 2012 Nov 1;491(7422):114-8. doi: 10.1038/nature11537. Epub 2012 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验