Miura Hideharu, Ozawa Shuichi, Enosaki Tsubasa, Kawakubo Atsushi, Hosono Fumika, Yamada Kiyoshi, Nagata Yasushi
Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan.
Department of Radiation Oncology, Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
J Appl Clin Med Phys. 2017 Jan;18(1):49-52. doi: 10.1002/acm2.12004. Epub 2016 Nov 21.
To perform dynamic tumor tracking (DTT) for clinical applications safely and accurately, gimbaled head swing verification is important. We propose a quantitative gimbaled head swing verification method for daily quality assurance (QA), which uses feature point tracking and a web camera. The web camera was placed on a couch at the same position for every gimbaled head swing verification, and could move based on a determined input function (sinusoidal patterns; amplitude: ± 20 mm; cycle: 3 s) in the pan and tilt directions at isocenter plane. Two continuous images were then analyzed for each feature point using the pyramidal Lucas-Kanade (LK) method, which is an optical flow estimation algorithm. We used a tapped hole as a feature point of the gimbaled head. The period and amplitude were analyzed to acquire a quantitative gimbaled head swing value for daily QA. The mean ± SD of the period were 3.00 ± 0.03 (range: 3.00-3.07) s and 3.00 ± 0.02 (range: 3.00-3.07) s in the pan and tilt directions, respectively. The mean ± SD of the relative displacement were 19.7 ± 0.08 (range: 19.6-19.8) mm and 18.9 ± 0.2 (range: 18.4-19.5) mm in the pan and tilt directions, respectively. The gimbaled head swing was reliable for DTT. We propose a quantitative gimbaled head swing verification method for daily QA using the feature point tracking method and a web camera. Our method can quantitatively assess the gimbaled head swing for daily QA from baseline values, measured at the time of acceptance and commissioning.
为了安全、准确地进行临床应用中的动态肿瘤跟踪(DTT),万向节头摆动验证非常重要。我们提出了一种用于日常质量保证(QA)的定量万向节头摆动验证方法,该方法使用特征点跟踪和网络摄像头。在每次万向节头摆动验证时,网络摄像头都放置在治疗床上的同一位置,并可根据确定的输入函数(正弦模式;幅度:±20毫米;周期:3秒)在等中心平面的平移和倾斜方向上移动。然后使用金字塔式卢卡斯-卡纳德(LK)方法(一种光流估计算法)对每个特征点的两张连续图像进行分析。我们使用一个螺孔作为万向节头的特征点。分析周期和幅度以获取用于日常QA的定量万向节头摆动值。在平移和倾斜方向上,周期的平均值±标准差分别为3.00±0.03(范围:3.00 - 3.07)秒和3.00±0.02(范围:3.00 - 3.07)秒。在平移和倾斜方向上,相对位移的平均值±标准差分别为19.7±0.08(范围:19.6 - 19.8)毫米和18.9±0.2(范围:18.4 - 19.5)毫米。万向节头摆动对于DTT是可靠的。我们提出了一种使用特征点跟踪方法和网络摄像头进行日常QA的定量万向节头摆动验证方法。我们的方法可以从验收和调试时测量的基线值定量评估日常QA中的万向节头摆动。