Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
J Am Chem Soc. 2013 Apr 24;135(16):6234-41. doi: 10.1021/ja400898s. Epub 2013 Apr 16.
Spatially selective deposition of metal onto complex DNA assemblies is a promising approach for the preparation of metallic nanostructures with features that are smaller than what can be produced by top-down lithographic techniques. We have recently reported the ability of 2'-deoxyoligonucleotides containing boranephosphonate linkages (bpDNA) to reduce AuCl4(-), Ag(+), and PtCl4(2-) ions to the corresponding nanoparticles. Here we demonstrate incorporation of bpDNA oligomers into a two-dimensional DNA array comprised of tiles containing double crossover junctions. We further demonstrate the site-specific deposition of metallic silver onto this DNA structure which generates well-defined and preprogrammed arrays of silver nanoparticles. With this approach the size of the metallic features that can be produced is limited only by the underlying DNA template. These advances were enabled due to a new method for synthesizing bpDNA that uses a silyl protecting group on the DNA nucleobases during the solid-phase 2'-deoxyoligonucleotide synthesis.
将金属选择性地沉积到复杂的 DNA 组装体上是一种很有前途的方法,可用于制备具有比自上而下的光刻技术所能产生的特征更小的金属纳米结构。我们最近报道了含有硼膦酸酯键(bpDNA)的 2'-脱氧寡核苷酸还原 AuCl4(-)、Ag(+)和 PtCl4(2-)离子为相应纳米颗粒的能力。在这里,我们展示了将 bpDNA 寡聚物掺入由含有双交叉连接的瓦片组成的二维 DNA 阵列中。我们进一步证明了可以将金属银沉积到这种 DNA 结构上,从而生成具有良好定义和预编程的银纳米颗粒阵列。通过这种方法,可以产生的金属特征的大小仅受底层 DNA 模板的限制。这些进展得益于一种新的 bpDNA 合成方法,该方法在固相 2'-脱氧寡核苷酸合成过程中在 DNA 碱基上使用硅烷基保护基团。