Suppr超能文献

中文患者牙周炎监测的自报告问卷:一项验证研究。

Self-reported questionnaire for surveillance of periodontitis in Chinese patients from a prosthodontic clinic: a validation study.

机构信息

Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.

出版信息

J Clin Periodontol. 2013 Jun;40(6):616-23. doi: 10.1111/jcpe.12103. Epub 2013 Apr 4.

Abstract

BACKGROUND AND PURPOSE

Periodontal maintenance is critical for the long-term success of prosthodontic treatment. This study investigates the validity of questionnaires/models in monitoring periodontitis for Chinese prosthodontic patients.

METHODS

In total, 114 patients completed the questionnaire. The chi-squared test and classification and regression trees were used to screen for predictive items. Predictive models developed by Yamamoto et al. and Dietrich et al. were validated using ROC curves and calibration plots.

RESULTS

Univariate and multivariate analysis revealed that demographic features (age, gender, smoking history, education history and number of remaining teeth), symptoms(tooth mobility without injury, painful gums), dental recommendations ("need periodontal or gum treatment?") and treatment history (scaling and root planing) were predictive of periodontitis. The AUC values of the Yamamoto model and Dietrich's model-a and model-b were 0.67, 0.89, and 0.89 for moderate/severe periodontitis and 0.78, 0.93, and 0.93 for severe periodontitis, respectively. The calibration plot showed that Dietrich's model-a and model-b accurately predicted the actual probability of moderate/severe and severe periodontitis, respectively.

CONCLUSION

Questionnaires may be an efficient approach to monitor periodontal health in China. Dietrich's models, with age, smoking and self-reported mobility as predictors, can be used to monitor periodontal health for Chinese prosthodontic patients.

摘要

背景与目的

牙周维护对于修复治疗的长期成功至关重要。本研究旨在探讨问卷/模型在监测中国修复患者牙周炎方面的有效性。

方法

共有 114 名患者完成了问卷调查。采用卡方检验和分类回归树筛选有预测价值的项目。采用 Yamamoto 等和 Dietrich 等建立的预测模型,通过 ROC 曲线和校准图进行验证。

结果

单因素和多因素分析显示,人口统计学特征(年龄、性别、吸烟史、受教育程度和剩余牙齿数)、症状(无外伤的牙齿松动、疼痛的牙龈)、口腔建议(“是否需要牙周或牙龈治疗?”)和治疗史(洁治和根面平整)是预测牙周炎的因素。Yamamoto 模型和 Dietrich 模型-a、模型-b 预测中重度牙周炎的 AUC 值分别为 0.67、0.89 和 0.89,预测重度牙周炎的 AUC 值分别为 0.78、0.93 和 0.93。校准图显示,Dietrich 模型-a 和模型-b 可以准确预测中重度和重度牙周炎的实际概率。

结论

问卷可能是监测中国牙周健康的有效方法。以年龄、吸烟和自我报告的牙齿松动度为预测因子的 Dietrich 模型可用于监测中国修复患者的牙周健康。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验