Suppr超能文献

无酶组装支化多泛素链用于结构和生化研究。

Nonenzymatic assembly of branched polyubiquitin chains for structural and biochemical studies.

机构信息

Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360, USA.

出版信息

Bioorg Med Chem. 2013 Jun 15;21(12):3421-9. doi: 10.1016/j.bmc.2013.02.052. Epub 2013 Mar 15.

Abstract

Polymeric chains of a small protein ubiquitin are involved in regulation of nearly all vital processes in eukaryotic cells. Elucidating the signaling properties of polyubiquitin requires the ability to make these chains in vitro. In recent years, chemical and chemical-biology tools have been developed that produce fully natural isopeptide-linked polyUb chains with no need for linkage-specific ubiquitin-conjugating enzymes. These methods produced unbranched chains (in which no more than one lysine per ubiquitin is conjugated to another ubiquitin). Here we report a nonenzymatic method for the assembly of fully natural isopeptide-linked branched polyubiquitin chains. This method is based on the use of mutually orthogonal removable protecting groups (e.g., Boc- and Alloc-) on lysines combined with an Ag-catalyzed condensation reaction between a C-terminal thioester on one ubiquitin and a specific ε-amine on another ubiquitin, and involves genetic incorporation of more than one Lys(Boc) at the desired linkage positions in the ubiquitin sequence. We demonstrate our method by making a fully natural branched tri-ubiquitin containing isopeptide linkages via Lys11 and Lys33, and a (15)N-enriched proximal ubiquitin, which enabled monomer-specific structural and dynamical studies by NMR. Furthermore, we assayed disassembly of branched and unbranched tri-ubiquitins as well as control di-ubiquitins by the yeast proteasome-associated deubiquitinase Ubp6. Our results show that Ubp6 can recognize and disassemble a branched polyubiquitin, wherein cleavage preferences for individual linkages are retained. Our spectroscopic and functional data suggest that, at least for the chains studied here, the isopeptide linkages are effectively independent of each other. Together with our method for nonenzymatic assembly of unbranched polyubiquitin, these developments now provide tools for making fully natural polyubiquitin chains of essentially any type of linkage and length.

摘要

小蛋白泛素的聚合链参与真核细胞中几乎所有重要过程的调节。阐明多泛素的信号特性需要能够在体外制造这些链的能力。近年来,已经开发出了化学和化学生物学工具,可以生产完全天然的异肽键连接的多 Ub 链,而不需要连接特异性泛素缀合酶。这些方法产生了无分支链(其中每个泛素中不超过一个赖氨酸与另一个泛素连接)。在这里,我们报告了一种非酶法用于组装完全天然的异肽键连接的分支多泛素链。该方法基于在赖氨酸上使用相互正交的可去除保护基(例如 Boc-和Alloc-)与 Ag 催化的缩合反应相结合,该反应发生在一个泛素的 C 末端硫酯和另一个泛素的特定 ε-胺之间,并且涉及在泛素序列中所需连接位置处遗传掺入多个 Lys(Boc)。我们通过在赖氨酸 11 和赖氨酸 33 处以及(15)N 富集的近端泛素处制造完全天然的分支三泛素来证明我们的方法,这使得通过 NMR 进行单体特异性结构和动力学研究成为可能。此外,我们通过酵母蛋白酶体相关去泛素酶 Ubp6 检测了分支和无分支三泛素以及对照二泛素的解体。我们的结果表明,Ubp6 可以识别和分解分支多泛素,其中对各个键的切割偏好保持不变。我们的光谱和功能数据表明,至少对于这里研究的链,异肽键彼此独立。结合我们用于非酶法组装无分支多泛素的方法,这些发展现在为制造基本上任何类型的连接和长度的完全天然多泛素链提供了工具。

相似文献

1
Nonenzymatic assembly of branched polyubiquitin chains for structural and biochemical studies.
Bioorg Med Chem. 2013 Jun 15;21(12):3421-9. doi: 10.1016/j.bmc.2013.02.052. Epub 2013 Mar 15.
2
Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme.
J Am Chem Soc. 2011 Nov 9;133(44):17855-68. doi: 10.1021/ja207220g. Epub 2011 Oct 19.
3
Emerging roles for Lys11-linked polyubiquitin in cellular regulation.
Trends Biochem Sci. 2011 Jul;36(7):355-63. doi: 10.1016/j.tibs.2011.04.004. Epub 2011 Jun 7.
4
The Crystal Structure and Conformations of an Unbranched Mixed Tri-Ubiquitin Chain Containing K48 and K63 Linkages.
J Mol Biol. 2017 Dec 8;429(24):3801-3813. doi: 10.1016/j.jmb.2017.10.027. Epub 2017 Oct 27.
5
Controlled synthesis of polyubiquitin chains.
Methods Enzymol. 2005;399:21-36. doi: 10.1016/S0076-6879(05)99002-2.
7
Synthesis and analysis of linear ubiquitin chains.
Methods Mol Biol. 2012;832:229-38. doi: 10.1007/978-1-61779-474-2_16.
8
Reading the ubiquitin postal code.
Curr Opin Struct Biol. 2011 Dec;21(6):792-801. doi: 10.1016/j.sbi.2011.09.009. Epub 2011 Oct 27.

引用本文的文献

1
Emerging tools and methods to study cell signalling mediated by branched ubiquitin chains.
Biochem Soc Trans. 2025 Jun 30;53(3):579-592. doi: 10.1042/BST20253015.
3
Convergent Assembly of Homo- and Heterotypic Ubiquitin Chains from Functionalized, Expressed Monomers via Thiol-Ene Chemistry.
Angew Chem Int Ed Engl. 2025 May;64(21):e202502638. doi: 10.1002/anie.202502638. Epub 2025 Apr 7.
4
Genetic Code Expansion Approaches to Decipher the Ubiquitin Code.
Chem Rev. 2024 Oct 23;124(20):11544-11584. doi: 10.1021/acs.chemrev.4c00375. Epub 2024 Sep 23.
5
Biocompatible Lysine Protecting Groups for the Chemoenzymatic Synthesis of K48/K63 Heterotypic and Branched Ubiquitin Chains.
ACS Cent Sci. 2023 Jul 15;9(8):1633-1641. doi: 10.1021/acscentsci.3c00389. eCollection 2023 Aug 23.
6
Triubiquitin Probes for Identification of Reader and Eraser Proteins of Branched Polyubiquitin Chains.
ACS Chem Biol. 2023 Apr 21;18(4):837-847. doi: 10.1021/acschembio.2c00898. Epub 2023 Mar 27.
9
Chemical methods for protein site-specific ubiquitination.
RSC Chem Biol. 2021 Feb 25;2(2):450-467. doi: 10.1039/d0cb00215a. eCollection 2021 Apr 1.
10
Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis.
Molecules. 2020 Nov 9;25(21):5200. doi: 10.3390/molecules25215200.

本文引用的文献

1
Mixed-linkage ubiquitin chains send mixed messages.
Structure. 2013 May 7;21(5):727-40. doi: 10.1016/j.str.2013.02.019. Epub 2013 Apr 4.
2
Chemistry and biology of the ubiquitin signal.
Angew Chem Int Ed Engl. 2012 Jul 9;51(28):6840-62. doi: 10.1002/anie.201200020. Epub 2012 Jun 13.
3
Release factor one is nonessential in Escherichia coli.
ACS Chem Biol. 2012 Aug 17;7(8):1337-44. doi: 10.1021/cb300229q. Epub 2012 Jun 13.
4
The ubiquitin code.
Annu Rev Biochem. 2012;81:203-29. doi: 10.1146/annurev-biochem-060310-170328. Epub 2012 Apr 10.
6
Non-canonical ubiquitin-based signals for proteasomal degradation.
J Cell Sci. 2012 Feb 1;125(Pt 3):539-48. doi: 10.1242/jcs.093567.
7
Unraveling the complexity of ubiquitin signaling.
ACS Chem Biol. 2012 Jan 20;7(1):52-63. doi: 10.1021/cb2004059. Epub 2012 Jan 11.
8
Structure and recognition of polyubiquitin chains of different lengths and linkage.
F1000 Biol Rep. 2011;3:26. doi: 10.3410/B3-26. Epub 2011 Dec 1.
9
Click synthesis of ubiquitin dimer analogs to interrogate linkage-specific UBA domain binding.
Chem Commun (Camb). 2012 Jan 7;48(2):296-8. doi: 10.1039/c1cc15834a. Epub 2011 Nov 18.
10
Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme.
J Am Chem Soc. 2011 Nov 9;133(44):17855-68. doi: 10.1021/ja207220g. Epub 2011 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验