Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360, USA.
Bioorg Med Chem. 2013 Jun 15;21(12):3421-9. doi: 10.1016/j.bmc.2013.02.052. Epub 2013 Mar 15.
Polymeric chains of a small protein ubiquitin are involved in regulation of nearly all vital processes in eukaryotic cells. Elucidating the signaling properties of polyubiquitin requires the ability to make these chains in vitro. In recent years, chemical and chemical-biology tools have been developed that produce fully natural isopeptide-linked polyUb chains with no need for linkage-specific ubiquitin-conjugating enzymes. These methods produced unbranched chains (in which no more than one lysine per ubiquitin is conjugated to another ubiquitin). Here we report a nonenzymatic method for the assembly of fully natural isopeptide-linked branched polyubiquitin chains. This method is based on the use of mutually orthogonal removable protecting groups (e.g., Boc- and Alloc-) on lysines combined with an Ag-catalyzed condensation reaction between a C-terminal thioester on one ubiquitin and a specific ε-amine on another ubiquitin, and involves genetic incorporation of more than one Lys(Boc) at the desired linkage positions in the ubiquitin sequence. We demonstrate our method by making a fully natural branched tri-ubiquitin containing isopeptide linkages via Lys11 and Lys33, and a (15)N-enriched proximal ubiquitin, which enabled monomer-specific structural and dynamical studies by NMR. Furthermore, we assayed disassembly of branched and unbranched tri-ubiquitins as well as control di-ubiquitins by the yeast proteasome-associated deubiquitinase Ubp6. Our results show that Ubp6 can recognize and disassemble a branched polyubiquitin, wherein cleavage preferences for individual linkages are retained. Our spectroscopic and functional data suggest that, at least for the chains studied here, the isopeptide linkages are effectively independent of each other. Together with our method for nonenzymatic assembly of unbranched polyubiquitin, these developments now provide tools for making fully natural polyubiquitin chains of essentially any type of linkage and length.
小蛋白泛素的聚合链参与真核细胞中几乎所有重要过程的调节。阐明多泛素的信号特性需要能够在体外制造这些链的能力。近年来,已经开发出了化学和化学生物学工具,可以生产完全天然的异肽键连接的多 Ub 链,而不需要连接特异性泛素缀合酶。这些方法产生了无分支链(其中每个泛素中不超过一个赖氨酸与另一个泛素连接)。在这里,我们报告了一种非酶法用于组装完全天然的异肽键连接的分支多泛素链。该方法基于在赖氨酸上使用相互正交的可去除保护基(例如 Boc-和Alloc-)与 Ag 催化的缩合反应相结合,该反应发生在一个泛素的 C 末端硫酯和另一个泛素的特定 ε-胺之间,并且涉及在泛素序列中所需连接位置处遗传掺入多个 Lys(Boc)。我们通过在赖氨酸 11 和赖氨酸 33 处以及(15)N 富集的近端泛素处制造完全天然的分支三泛素来证明我们的方法,这使得通过 NMR 进行单体特异性结构和动力学研究成为可能。此外,我们通过酵母蛋白酶体相关去泛素酶 Ubp6 检测了分支和无分支三泛素以及对照二泛素的解体。我们的结果表明,Ubp6 可以识别和分解分支多泛素,其中对各个键的切割偏好保持不变。我们的光谱和功能数据表明,至少对于这里研究的链,异肽键彼此独立。结合我们用于非酶法组装无分支多泛素的方法,这些发展现在为制造基本上任何类型的连接和长度的完全天然多泛素链提供了工具。