Suppr超能文献

利用遗传密码子扩展进行蛋白质翻译后修饰的功能分析。

Functional analysis of protein post-translational modifications using genetic codon expansion.

机构信息

State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.

Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.

出版信息

Protein Sci. 2023 Apr;32(4):e4618. doi: 10.1002/pro.4618.

Abstract

Post-translational modifications (PTMs) of proteins not only exponentially increase the diversity of proteoforms, but also contribute to dynamically modulating the localization, stability, activity, and interaction of proteins. Understanding the biological consequences and functions of specific PTMs has been challenging for many reasons, including the dynamic nature of many PTMs and the technical limitations to access homogenously modified proteins. The genetic code expansion technology has emerged to provide unique approaches for studying PTMs. Through site-specific incorporation of unnatural amino acids (UAAs) bearing PTMs or their mimics into proteins, genetic code expansion allows the generation of homogenous proteins with site-specific modifications and atomic resolution both in vitro and in vivo. With this technology, various PTMs and mimics have been precisely introduced into proteins. In this review, we summarize the UAAs and approaches that have been recently developed to site-specifically install PTMs and their mimics into proteins for functional studies of PTMs.

摘要

蛋白质的翻译后修饰(PTMs)不仅使蛋白形式的多样性呈指数级增加,而且有助于动态调节蛋白质的定位、稳定性、活性和相互作用。由于多种 PTM 的动态特性以及获得均质修饰蛋白的技术限制等诸多原因,理解特定 PTM 的生物学后果和功能一直具有挑战性。遗传密码扩展技术的出现为研究 PTM 提供了独特的方法。通过将带有 PTM 或其类似物的非天然氨基酸(UAAs)定点掺入蛋白质中,遗传密码扩展允许在体外和体内生成具有定点修饰和原子分辨率的均质蛋白质。利用这项技术,可以精确地将各种 PTM 及其类似物引入蛋白质中。在本文中,我们总结了最近开发的用于定点将 PTM 及其类似物引入蛋白质中的 UAAs 和方法,以用于 PTM 功能研究。

相似文献

2
Applications of Genetic Code Expansion in Studying Protein Post-translational Modification.
J Mol Biol. 2022 Apr 30;434(8):167424. doi: 10.1016/j.jmb.2021.167424. Epub 2021 Dec 28.
3
Chemogenetic and optogenetic control of post-translational modifications through genetic code expansion.
Curr Opin Chem Biol. 2021 Aug;63:123-131. doi: 10.1016/j.cbpa.2021.02.016. Epub 2021 Apr 9.
4
5
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications.
Oxid Med Cell Longev. 2018 Apr 23;2018:7607463. doi: 10.1155/2018/7607463. eCollection 2018.
6
Introducing bioorthogonal functionalities into proteins in living cells.
Acc Chem Res. 2011 Sep 20;44(9):742-51. doi: 10.1021/ar200067r. Epub 2011 Jun 2.
7
Increasing the chemical space of proteins in living cells via genetic code expansion.
Curr Opin Chem Biol. 2020 Oct;58:112-120. doi: 10.1016/j.cbpa.2020.07.012. Epub 2020 Sep 7.
8
Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.
Chem Rev. 2024 Mar 13;124(5):2805-2838. doi: 10.1021/acs.chemrev.3c00850. Epub 2024 Feb 19.
9
Deciphering functional roles of protein succinylation and glutarylation using genetic code expansion.
Nat Chem. 2024 Jun;16(6):913-921. doi: 10.1038/s41557-024-01500-5. Epub 2024 Mar 26.
10
Expanding the Genetic Code for Neuronal Studies.
Chembiochem. 2020 Nov 16;21(22):3169-3179. doi: 10.1002/cbic.202000300. Epub 2020 Jul 20.

引用本文的文献

4
Computationally Assisted Noncanonical Amino Acid Incorporation.
ACS Cent Sci. 2024 Dec 16;11(1):84-90. doi: 10.1021/acscentsci.4c01544. eCollection 2025 Jan 22.
5
7
Nonenzymatic lysine D-lactylation induced by glyoxalase II substrate SLG dampens inflammatory immune responses.
Cell Res. 2025 Feb;35(2):97-116. doi: 10.1038/s41422-024-01060-w. Epub 2025 Jan 6.
8
Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets.
Signal Transduct Target Ther. 2025 Jan 6;10(1):4. doi: 10.1038/s41392-024-02070-1.
9
Cracking Lysine Crotonylation (Kcr): Enlightening a Promising Post-Translational Modification.
Chembiochem. 2025 Jan 14;26(2):e202400639. doi: 10.1002/cbic.202400639. Epub 2024 Oct 27.
10
Reversing the charge of lysine by genetic code expansion.
Nat Chem. 2024 Jun;16(6):849-851. doi: 10.1038/s41557-024-01536-7.

本文引用的文献

1
Deciphering protein post-translational modifications using chemical biology tools.
Nat Rev Chem. 2020 Dec;4(12):674-695. doi: 10.1038/s41570-020-00223-8. Epub 2020 Oct 6.
2
Linking chromatin acylation mark-defined proteome and genome in living cells.
Cell. 2023 Mar 2;186(5):1066-1085.e36. doi: 10.1016/j.cell.2023.02.007.
3
SIRT1 deacetylates WEE1 and sensitizes cancer cells to WEE1 inhibition.
Nat Chem Biol. 2023 May;19(5):585-595. doi: 10.1038/s41589-022-01240-y. Epub 2023 Jan 12.
4
Genetic code expansion reveals aminoacylated lysine ubiquitination mediated by UBE2W.
Nat Struct Mol Biol. 2023 Jan;30(1):62-71. doi: 10.1038/s41594-022-00866-9. Epub 2023 Jan 2.
6
Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine.
Nat Commun. 2022 Nov 24;13(1):7226. doi: 10.1038/s41467-022-34980-5.
9
Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity.
Nat Immunol. 2022 Aug;23(8):1193-1207. doi: 10.1038/s41590-022-01269-0. Epub 2022 Jul 25.
10
Deciphering the Interactome of Histone Marks in Living Cells via Genetic Code Expansion Combined with Proximity Labeling.
Anal Chem. 2022 Aug 2;94(30):10705-10714. doi: 10.1021/acs.analchem.2c01042. Epub 2022 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验