Suppr超能文献

生物组织的间质生长和重塑:组织组成作为状态变量。

Interstitial growth and remodeling of biological tissues: tissue composition as state variables.

机构信息

Department of Mechanical Engineering, Columbia University.

出版信息

J Mech Behav Biomed Mater. 2014 Jan;29:544-56. doi: 10.1016/j.jmbbm.2013.03.003. Epub 2013 Mar 15.

Abstract

Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue's interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular matrix, may similarly evolve. Therefore, growth theories may be formulated by accounting for the evolution of tissue composition over time in response to various biological and mechanical triggers. This approach has been the foundation of classical bone remodeling theories that successfully describe Wolff's law by establishing a dependence between Young's modulus and bone apparent density and by formulating a constitutive relation between bone mass supply and the state of strain. The goal of this study is to demonstrate that adding tissue composition as state variables in the constitutive relations governing the stress-strain response and the mass supply represents a very general and straightforward method to model interstitial growth and remodeling in a wide variety of biological tissues. The foundation for this approach is rooted in the framework of mixture theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further generalization is to allow each solid constituent in a constrained solid mixture to have its own reference (stress-free) configuration. Several illustrations are provided, ranging from bone remodeling to cartilage tissue engineering and cervical remodeling during pregnancy.

摘要

生物组织的生长和重塑涉及组织间质液中的可溶性构建块与细胞和细胞外基质各种成分之间的质量交换。随着这些各种成分的含量随生长而演变,相关的材料特性(例如细胞外基质的弹性模量)也可能类似地演变。因此,可以通过考虑组织组成随时间的演化来制定生长理论,以响应各种生物和机械触发因素。这种方法一直是经典骨重塑理论的基础,该理论通过建立杨氏模量与骨表观密度之间的依赖性以及通过制定骨质量供应与应变状态之间的本构关系,成功地描述了沃尔夫定律。本研究的目的是证明,在控制应力-应变响应和质量供应的本构关系中添加组织组成作为状态变量,是模拟各种生物组织中间质生长和重塑的一种非常通用和直接的方法。这种方法的基础源于混合物理论的框架,该理论将组织建模为多种固体和流体成分的混合物。进一步的推广是允许约束固体混合物中的每个固体成分都有自己的参考(无应力)配置。提供了几个说明,从骨重塑到软骨组织工程以及妊娠期间的颈椎重塑。

相似文献

1
Interstitial growth and remodeling of biological tissues: tissue composition as state variables.
J Mech Behav Biomed Mater. 2014 Jan;29:544-56. doi: 10.1016/j.jmbbm.2013.03.003. Epub 2013 Mar 15.
3
On the theory of reactive mixtures for modeling biological growth.
Biomech Model Mechanobiol. 2007 Nov;6(6):423-45. doi: 10.1007/s10237-006-0070-x. Epub 2007 Jan 6.
4
Wolff's law of trabecular architecture at remodeling equilibrium.
J Biomech Eng. 1986 Feb;108(1):83-8. doi: 10.1115/1.3138584.
5
A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue.
Biomech Model Mechanobiol. 2016 Dec;15(6):1389-1403. doi: 10.1007/s10237-016-0770-9.
6
An orthotropic continuum model with substructure evolution for describing bone remodeling: an interpretation of the primary mechanism behind Wolff's law.
Biomech Model Mechanobiol. 2023 Dec;22(6):2135-2152. doi: 10.1007/s10237-023-01755-w. Epub 2023 Aug 5.
7
A Hertzian contact mechanics based formulation to improve ultrasound elastography assessment of uterine cervical tissue stiffness.
J Biomech. 2015 Jun 25;48(9):1524-32. doi: 10.1016/j.jbiomech.2015.03.032. Epub 2015 Apr 29.
9
Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.
Biomech Model Mechanobiol. 2014 Oct;13(5):1105-20. doi: 10.1007/s10237-014-0560-1. Epub 2014 Feb 21.

引用本文的文献

2
Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks.
Small Methods. 2025 Jan;9(1):e2400620. doi: 10.1002/smtd.202400620. Epub 2024 Aug 1.
4
Continuum Growth Mechanics: Reconciling Two Common Frameworks.
J Biomech Eng. 2024 Oct 1;146(10). doi: 10.1115/1.4065309.
5
Modeling Inelastic Responses Using Constrained Reactive Mixtures.
Eur J Mech A Solids. 2023 Jul-Aug;100. doi: 10.1016/j.euromechsol.2023.105009. Epub 2023 May 6.
6
Computational study of biomechanical drivers of renal cystogenesis.
Biomech Model Mechanobiol. 2023 Aug;22(4):1113-1127. doi: 10.1007/s10237-023-01704-7. Epub 2023 Apr 6.
7
Computational models of cardiac hypertrophy.
Prog Biophys Mol Biol. 2021 Jan;159:75-85. doi: 10.1016/j.pbiomolbio.2020.07.001. Epub 2020 Jul 21.
8
Fast, Rate-Independent, Finite Element Implementation of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling.
Comput Methods Appl Mech Eng. 2020 Aug 15;368. doi: 10.1016/j.cma.2020.113156. Epub 2020 Jun 5.
9
Mechanics of cervical remodelling: insights from rodent models of pregnancy.
Interface Focus. 2019 Oct 6;9(5):20190026. doi: 10.1098/rsfs.2019.0026. Epub 2019 Aug 16.
10
Growth and remodelling of living tissues: perspectives, challenges and opportunities.
J R Soc Interface. 2019 Aug 30;16(157):20190233. doi: 10.1098/rsif.2019.0233. Epub 2019 Aug 21.

本文引用的文献

1
Frontiers in growth and remodeling.
Mech Res Commun. 2012 Jun 1;42:1-14. doi: 10.1016/j.mechrescom.2012.02.007. Epub 2012 Mar 3.
2
Mechanics of Cell Growth.
Mech Res Commun. 2012 Jun 1;42:118-125. doi: 10.1016/j.mechrescom.2012.01.010. Epub 2012 Jan 31.
3
Continuum mixture models of biological growth and remodeling: past successes and future opportunities.
Annu Rev Biomed Eng. 2012;14:97-111. doi: 10.1146/annurev-bioeng-071910-124726.
4
Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth.
Endocrinology. 2012 Jul;153(7):3493-503. doi: 10.1210/en.2011-1950. Epub 2012 Apr 23.
5
FEBio: finite elements for biomechanics.
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
6
Cervical remodeling in term and preterm birth: insights from an animal model.
Reproduction. 2012 Apr;143(4):429-38. doi: 10.1530/REP-11-0466. Epub 2012 Feb 18.
7
Osmotic swelling and residual stress in cardiovascular tissues.
J Biomech. 2012 Mar 15;45(5):780-9. doi: 10.1016/j.jbiomech.2011.11.018. Epub 2012 Jan 10.
8
Mixture theory-based poroelasticity as a model of interstitial tissue growth.
Mech Mater. 2012 Jan;44:47-57. doi: 10.1016/j.mechmat.2011.07.005.
9
Perspectives on biological growth and remodeling.
J Mech Phys Solids. 2011 Apr 1;59(4):863-883. doi: 10.1016/j.jmps.2010.12.011.
10
Dynamic loading of immature epiphyseal cartilage pumps nutrients out of vascular canals.
J Biomech. 2011 Jun 3;44(9):1654-9. doi: 10.1016/j.jbiomech.2011.03.026. Epub 2011 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验