Suppr超能文献

通过物理知识神经网络识别生物组织的异质微观力学特性。

Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks.

作者信息

Wu Wensi, Daneker Mitchell, Turner Kevin T, Jolley Matthew A, Lu Lu

机构信息

Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

出版信息

Small Methods. 2025 Jan;9(1):e2400620. doi: 10.1002/smtd.202400620. Epub 2024 Aug 1.

Abstract

The heterogeneous micromechanical properties of biological tissues have profound implications across diverse medical and engineering domains. However, identifying full-field heterogeneous elastic properties of soft materials using traditional engineering approaches is fundamentally challenging due to difficulties in estimating local stress fields. Recently, there has been a growing interest in data-driven models for learning full-field mechanical responses, such as displacement and strain, from experimental or synthetic data. However, research studies on inferring full-field elastic properties of materials, a more challenging problem, are scarce, particularly for large deformation, hyperelastic materials. Here, a physics-informed machine learning approach is proposed to identify the elasticity map in nonlinear, large deformation hyperelastic materials. This study reports the prediction accuracies and computational efficiency of physics-informed neural networks (PINNs) in inferring the heterogeneous elasticity maps across materials with structural complexity that closely resemble real tissue microstructure, such as brain, tricuspid valve, and breast cancer tissues. Further, the improved architecture is applied to three hyperelastic constitutive models: Neo-Hookean, Mooney Rivlin, and Gent. The improved network architecture consistently produces accurate estimations of heterogeneous elasticity maps, even when there is up to 10% noise present in the training data.

摘要

生物组织的非均匀微观力学特性在不同的医学和工程领域有着深远的影响。然而,由于估计局部应力场存在困难,使用传统工程方法识别软材料的全场非均匀弹性特性从根本上来说具有挑战性。最近,人们对数据驱动模型越来越感兴趣,这些模型用于从实验数据或合成数据中学习全场力学响应,如位移和应变。然而,关于推断材料全场弹性特性这一更具挑战性问题的研究却很少,特别是对于大变形、超弹性材料。在此,提出了一种基于物理知识的机器学习方法来识别非线性、大变形超弹性材料中的弹性图谱。本研究报告了基于物理知识的神经网络(PINNs)在推断具有与真实组织微观结构极为相似的结构复杂性的材料(如脑、三尖瓣和乳腺癌组织)的非均匀弹性图谱时的预测精度和计算效率。此外,改进后的架构被应用于三种超弹性本构模型:新胡克模型、穆尼 - 里夫林模型和根特模型。即使训练数据中存在高达10%的噪声,改进后的网络架构仍能始终如一地准确估计非均匀弹性图谱。

相似文献

6
Automated model discovery for muscle using constitutive recurrent neural networks.使用本构递归神经网络进行肌肉的自动模型发现。
J Mech Behav Biomed Mater. 2023 Sep;145:106021. doi: 10.1016/j.jmbbm.2023.106021. Epub 2023 Jul 11.
8
Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.基于体内宏观压痕的软组织本构参数可识别性
J Mech Behav Biomed Mater. 2023 Apr;140:105708. doi: 10.1016/j.jmbbm.2023.105708. Epub 2023 Feb 3.

本文引用的文献

4
New Mechanical Markers for Tracking the Progression of Myocardial Infarction.用于追踪心肌梗死进展的新机械标志物。
Nano Lett. 2023 Aug 23;23(16):7350-7357. doi: 10.1021/acs.nanolett.3c01712. Epub 2023 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验