Suppr超能文献

生长与重塑前沿

Frontiers in growth and remodeling.

作者信息

Menzel Andreas, Kuhl Ellen

机构信息

Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Leonhard-Euler-Str. 5, D-44227 Dortmund, Germany.

出版信息

Mech Res Commun. 2012 Jun 1;42:1-14. doi: 10.1016/j.mechrescom.2012.02.007. Epub 2012 Mar 3.

Abstract

Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine.

摘要

与普通工程材料不同,生物体能自主响应环境变化。由于持续的微观结构更新,生物结构能在数月、数周或数天内变强、变弱、变大或变小。硬组织可通过增加密度来适应并变强。软组织可通过增加体积来适应并变大。三十多年来,力学界一直积极从机械角度理解生长和重塑现象。然而,迄今为止,对于生长尚无一个被该领域所有科学家都同等接受的单一、统一的表征。在此,我们阐明生物生长和重塑的连续介质建模,并全面概述其历史发展和趋势。我们对当前研究亮点进行了前沿综述,并讨论了挑战和潜在的未来方向。以体积生长为例,我们说明了如何建立和利用生长理论来表征柔软生物物质的功能适应性。我们预期这篇综述将成为生长和重塑领域批判性讨论及未来研究的起点,对生命科学和医学可能产生影响。

相似文献

1
Frontiers in growth and remodeling.
Mech Res Commun. 2012 Jun 1;42:1-14. doi: 10.1016/j.mechrescom.2012.02.007. Epub 2012 Mar 3.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
4
Growth and remodelling of living tissues: perspectives, challenges and opportunities.
J R Soc Interface. 2019 Aug 30;16(157):20190233. doi: 10.1098/rsif.2019.0233. Epub 2019 Aug 21.
5
Growing matter: a review of growth in living systems.
J Mech Behav Biomed Mater. 2014 Jan;29:529-43. doi: 10.1016/j.jmbbm.2013.10.009. Epub 2013 Oct 28.
6
The Geometry of Incompatibility in Growing Soft Tissues: Theory and Numerical Characterization.
J Mech Phys Solids. 2021 Jan;146. doi: 10.1016/j.jmps.2020.104177. Epub 2020 Oct 17.
7
The Impact of Inflammatory Bowel Disease in Canada 2018: Children and Adolescents with IBD.
J Can Assoc Gastroenterol. 2019 Feb;2(Suppl 1):S49-S67. doi: 10.1093/jcag/gwy056. Epub 2018 Nov 2.
8
A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.
J Microsc. 2018 Dec;272(3):165-179. doi: 10.1111/jmi.12701. Epub 2018 Apr 14.
9
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
10
Physical Biology : challenges for our second decade.
Phys Biol. 2014 Jun;11(3):030201. doi: 10.1088/1478-3975/11/3/030201. Epub 2014 Apr 15.

引用本文的文献

3
Biomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling.
J R Soc Interface. 2025 Jan;22(222):20240361. doi: 10.1098/rsif.2024.0361. Epub 2025 Jan 29.
4
Numerical investigation of new rete ridge formation in a multi-layer model of skin subjected to tissue expansion.
J Biomech. 2024 Nov;176:112346. doi: 10.1016/j.jbiomech.2024.112346. Epub 2024 Sep 27.
5
Continuum Growth Mechanics: Reconciling Two Common Frameworks.
J Biomech Eng. 2024 Oct 1;146(10). doi: 10.1115/1.4065309.
6
A Fluid-Solid-Growth Solver for Cardiovascular Modeling.
Comput Methods Appl Mech Eng. 2023 Dec 15;417(Pt B). doi: 10.1016/j.cma.2023.116312. Epub 2023 Aug 9.
7
Constitutive formulations for intrinsic anisotropy in soft electroelastic materials.
Sci Rep. 2023 Sep 7;13(1):14712. doi: 10.1038/s41598-023-37946-9.
8
Methods for numerical simulation of soft actively contractile materials.
Sci Rep. 2023 Jun 26;13(1):10369. doi: 10.1038/s41598-023-36465-x.
9
Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology.
Adv Healthc Mater. 2023 Aug;12(20):e2300991. doi: 10.1002/adhm.202300991. Epub 2023 Jun 8.
10
In-silico study of asymmetric remodeling of tumors in response to external biochemical stimuli.
Sci Rep. 2023 Jan 18;13(1):941. doi: 10.1038/s41598-022-26891-8.

本文引用的文献

1
Stretching skin: The physiological limit and beyond.
Int J Non Linear Mech. 2012 Oct;47(8):938-949. doi: 10.1016/j.ijnonlinmec.2011.07.006. Epub 2011 Jul 23.
2
Perspectives on biomechanical growth and remodeling mechanisms in glaucoma().
Mech Res Commun. 2012 Jun;42:92-106. doi: 10.1016/j.mechrescom.2012.01.007.
3
Mechanics of Cell Growth.
Mech Res Commun. 2012 Jun 1;42:118-125. doi: 10.1016/j.mechrescom.2012.01.010. Epub 2012 Jan 31.
4
Growth and remodeling of the left ventricle: A case study of myocardial infarction and surgical ventricular restoration.
Mech Res Commun. 2012 Jun 1;42:134-141. doi: 10.1016/j.mechrescom.2012.03.005. Epub 2012 Mar 12.
5
Constrained Mixture Models as Tools for Testing Competing Hypotheses in Arterial Biomechanics: A Brief Survey.
Mech Res Commun. 2012 Jun 1;42:126-133. doi: 10.1016/j.mechrescom.2012.02.003. Epub 2012 Feb 23.
6
A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload.
Mech Res Commun. 2012 Jun 1;42:40-50. doi: 10.1016/j.mechrescom.2011.11.004. Epub 2011 Nov 22.
7
A three-constituent damage model for arterial clamping in computer-assisted surgery.
Biomech Model Mechanobiol. 2013 Jan;12(1):123-36. doi: 10.1007/s10237-012-0386-7. Epub 2012 Mar 25.
8
Kinematics of cardiac growth: in vivo characterization of growth tensors and strains.
J Mech Behav Biomed Mater. 2012 Apr;8:165-77. doi: 10.1016/j.jmbbm.2011.12.006. Epub 2011 Dec 24.
9
On the biomechanics and mechanobiology of growing skin.
J Theor Biol. 2012 Mar 21;297:166-75. doi: 10.1016/j.jtbi.2011.12.022. Epub 2012 Jan 4.
10
Growing skin: A computational model for skin expansion in reconstructive surgery.
J Mech Phys Solids. 2011 Oct 1;59(10):2177-2190. doi: 10.1016/j.jmps.2011.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验