Suppr超能文献

荚膜组织胞浆菌这种真菌病原体感染性孢子的比较转录组学揭示了一组核心转录本,这些转录本决定了感染性和致病状态。

Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states.

作者信息

Inglis Diane O, Voorhies Mark, Hocking Murray Davina R, Sil Anita

机构信息

Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.

出版信息

Eukaryot Cell. 2013 Jun;12(6):828-52. doi: 10.1128/EC.00069-13. Epub 2013 Apr 5.

Abstract

Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia.

摘要

荚膜组织胞浆菌是一种可感染健康宿主和免疫功能低下宿主的真菌病原体。在其流行地区,荚膜组织胞浆菌生长于土壤中,当被人类吸入时会引发呼吸道和全身性疾病。荚膜组织胞浆菌生物学的一个有趣方面是,它会根据环境采用特殊的发育程序。在土壤中,它以细胞丝状链(菌丝体)的形式生长,产生无性孢子(分生孢子)。当土壤被扰动时,分生孢子形成气溶胶并被哺乳动物宿主吸入。在宿主体内,分生孢子萌发成酵母型细胞,这些细胞定殖于免疫细胞并引发疾病。尽管分生孢子能够引发感染和疾病,但尚未在分子水平上对其进行研究。我们开发了纯化荚膜组织胞浆菌分生孢子的方法,并且在此表明这些细胞在室温下萌发成丝状,在37°C时萌发成酵母型细胞。被巨噬细胞内化的分生孢子萌发成酵母型并在巨噬细胞内增殖,最终裂解宿主细胞。同样,用纯化的分生孢子感染小鼠足以在体内建立感染并产生有活力的酵母型细胞。为了在分子水平上表征分生孢子,我们对来自两个高度不同的荚膜组织胞浆菌菌株的分生孢子、酵母和菌丝体进行了全基因组表达谱分析。同时,我们使用同源性和蛋白质结构域分析手动注释了两个菌株的预测基因。对所得数据的分析定义了反映荚膜组织胞浆菌分生孢子、酵母和菌丝体独特分子状态的转录本集合。

相似文献

2
Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14573-8. doi: 10.1073/pnas.0806221105. Epub 2008 Sep 12.
4
[Dimorphism and pathogenesis of Histoplasma capsulatum].
Rev Argent Microbiol. 2006 Oct-Dec;38(4):235-42.
6
Characterization of the APSES-family transcriptional regulators of Histoplasma capsulatum.
FEMS Yeast Res. 2018 Dec 1;18(8). doi: 10.1093/femsyr/foy087.
7
O-Mannosylation of Proteins Enables Yeast Survival at Mammalian Body Temperatures.
mBio. 2018 Jan 2;9(1):e02121-17. doi: 10.1128/mBio.02121-17.
8
VEA1 is required for cleistothecial formation and virulence in Histoplasma capsulatum.
Fungal Genet Biol. 2012 Oct;49(10):838-46. doi: 10.1016/j.fgb.2012.07.001. Epub 2012 Jul 24.
10
Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum.
PLoS Biol. 2019 Sep 30;17(9):e3000168. doi: 10.1371/journal.pbio.3000168. eCollection 2019 Sep.

引用本文的文献

1
Transcriptomic atlas throughout Coccidioides development reveals key phase-enriched transcripts of this important fungal pathogen.
PLoS Biol. 2025 Apr 15;23(4):e3003066. doi: 10.1371/journal.pbio.3003066. eCollection 2025 Apr.
3
-macrophage cellular interactions and transcriptional response.
Infect Immun. 2023 Nov 16;91(11):e0027423. doi: 10.1128/iai.00274-23. Epub 2023 Oct 10.
4
"Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system.
Semin Immunol. 2023 Mar;66:101738. doi: 10.1016/j.smim.2023.101738. Epub 2023 Mar 4.
5
Pathogenicity & virulence of - A multifaceted organism adapted to intracellular environments.
Virulence. 2022 Dec;13(1):1900-1919. doi: 10.1080/21505594.2022.2137987.
6
Coccidioides Species: A Review of Basic Research: 2022.
J Fungi (Basel). 2022 Aug 16;8(8):859. doi: 10.3390/jof8080859.
7
Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of in Walnut.
Front Microbiol. 2022 Jul 15;13:926620. doi: 10.3389/fmicb.2022.926620. eCollection 2022.
8
Macrophages in Microbial Pathogenesis: Commonalities of Defense Evasion Mechanisms.
Infect Immun. 2022 May 19;90(5):e0029121. doi: 10.1128/IAI.00291-21. Epub 2021 Nov 15.
10
Flax rust infection transcriptomics reveals a transcriptional profile that may be indicative for rust Avr genes.
PLoS One. 2019 Dec 12;14(12):e0226106. doi: 10.1371/journal.pone.0226106. eCollection 2019.

本文引用的文献

1
Characterization of the velvet regulators in Aspergillus fumigatus.
Mol Microbiol. 2012 Nov;86(4):937-53. doi: 10.1111/mmi.12032. Epub 2012 Sep 25.
2
Saccharomyces Genome Database: the genomics resource of budding yeast.
Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5. doi: 10.1093/nar/gkr1029. Epub 2011 Nov 21.
3
Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins.
FEMS Microbiol Rev. 2012 Jan;36(1):1-24. doi: 10.1111/j.1574-6976.2011.00285.x. Epub 2011 Jul 13.
4
Regulation of conidiation by light in Aspergillus nidulans.
Genetics. 2011 Aug;188(4):809-22. doi: 10.1534/genetics.111.130096. Epub 2011 May 30.
5
6
Definition of the extracellular proteome of pathogenic-phase Histoplasma capsulatum.
J Proteome Res. 2011 Apr 1;10(4):1929-43. doi: 10.1021/pr1011697. Epub 2011 Feb 25.
8
InterPro protein classification.
Methods Mol Biol. 2011;694:37-47. doi: 10.1007/978-1-60761-977-2_3.
9
The yeast-phase virulence requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes.
Eukaryot Cell. 2011 Jan;10(1):87-97. doi: 10.1128/EC.00214-10. Epub 2010 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验