Suppr超能文献

MCAK 中结直肠癌相关突变的证据:一项计算报告。

Evidence of colorectal cancer-associated mutation in MCAK: a computational report.

机构信息

Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, 632014, Tamil Nadu, India.

出版信息

Cell Biochem Biophys. 2013;67(3):837-51. doi: 10.1007/s12013-013-9572-1.

Abstract

Computational prediction of disease-associated non-synonymous polymorphism (nsSNP) has provided a significant platform to filter out the pathological mutations from large pool of SNP datasets at a very low cost input. Several methodologies and complementary protocols have been previously implemented and has provided significant prediction results. Although the previously implicated prediction methods were capable of investigating the most likely deleterious nsSNPs, but due to the lack of genotype-phenotype association analysis, the prediction results lacked in accuracy level. In this work we implemented the computational compilation of protein conformational changes as well as the probable disease-associated phenotypic outcomes. Our result suggested E403K mutation in mitotic centromere-associated kinesin protein as highly damaging and showed strong concordance to the previously observed colorectal cancer mutations aggregation tendency and energy value changes. Moreover, the molecular dynamics simulation results showed major loss in conformation and stability of mutant N-terminal kinesin-like domain structure. The result obtained in this study will provide future prospect of computational approaches in determining the SNPs that may affect the native conformation of protein structure and lead to cancer-associated disorders.

摘要

计算预测与疾病相关的非同义突变(nsSNP)为从大量 SNP 数据集中以极低的成本筛选出病理性突变提供了一个重要的平台。以前已经实施了几种方法和补充协议,并提供了重要的预测结果。尽管以前涉及的预测方法能够研究最可能的有害 nsSNP,但由于缺乏基因型-表型关联分析,预测结果的准确性水平较低。在这项工作中,我们实现了蛋白质构象变化以及可能与疾病相关的表型结果的计算综合。我们的结果表明,有丝分裂着丝粒相关驱动蛋白中的 E403K 突变是高度有害的,并且与先前观察到的结直肠癌突变聚集趋势和能量值变化具有很强的一致性。此外,分子动力学模拟结果表明突变的 N 端驱动蛋白样结构域结构在构象和稳定性方面有较大损失。本研究的结果将为计算方法在确定可能影响蛋白质结构天然构象并导致与癌症相关疾病的 SNP 方面提供未来的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验