Suppr超能文献

理论研究突变在驱动蛋白马达动力学中的作用。

Theoretical Investigations of the Role of Mutations in Dynamics of Kinesin Motor Proteins.

机构信息

Department of Physics , University of Houston , Houston , Texas 77204 , United States.

出版信息

J Phys Chem B. 2018 May 3;122(17):4653-4661. doi: 10.1021/acs.jpcb.8b00830. Epub 2018 Apr 23.

Abstract

Motor proteins are active enzymatic molecules that are critically important for a variety of biological phenomena. It is known that some neurodegenerative diseases are caused by specific mutations in motor proteins that lead to their malfunctioning. Hereditary spastic paraplegia is one of such diseases, and it is associated with the mutations in the neuronal conventional kinesin gene, producing the decreased speed and processivity of this motor protein. Despite the importance of this problem, there is no clear understanding on the role of mutations in modifying dynamic properties of motor proteins. In this work, we investigate theoretically the molecular basis for negative effects of two specific mutations, N256S and R280S, on the dynamics of kinesin motor proteins. We hypothesize that these mutations might accelerate the adenosine triphosphate (ATP) release by increasing the probability of open conformations for the ATP-binding pocket. Our approach is based on the use of coarse-grained structure-based molecular dynamics simulations to analyze the conformational changes and chemical transitions in the kinesin molecule, which is also supplemented by investigation of a mesoscopic discrete-state stochastic model. Computer simulations suggest that mutations N256S and R280S can decrease the free energy difference between open and closed biochemical states, making the open conformation more stable and the ATP release faster, which is in agreement with our hypothesis. Furthermore, we show that in the case of N256S mutation, this effect is caused by disruption of interactions between α helix and switch I and loop L11 structural elements. Our computational results are qualitatively supported by the explicit analysis of the discrete-state stochastic model.

摘要

马达蛋白是一种活跃的酶分子,对于多种生物现象至关重要。已知某些神经退行性疾病是由马达蛋白的特定突变引起的,导致其功能失调。遗传性痉挛性截瘫就是这样一种疾病,它与神经元常规驱动蛋白基因的突变有关,导致这种马达蛋白的速度和进程降低。尽管这个问题很重要,但对于突变如何改变马达蛋白的动态特性,还没有明确的认识。在这项工作中,我们从理论上研究了两种特定突变(N256S 和 R280S)对驱动蛋白马达蛋白动力学的负向影响的分子基础。我们假设这些突变可能通过增加 ATP 结合口袋的开放构象的概率来加速三磷酸腺苷(ATP)的释放。我们的方法基于使用粗粒化结构的分子动力学模拟来分析驱动蛋白分子的构象变化和化学转变,同时还补充了介观离散状态随机模型的研究。计算机模拟表明,突变 N256S 和 R280S 可以降低开放和封闭生化状态之间的自由能差,使开放构象更稳定,ATP 释放更快,这与我们的假设一致。此外,我们还表明,在 N256S 突变的情况下,这种效应是由α螺旋与开关 I 和 L11 结构元件之间的相互作用中断引起的。我们的计算结果得到了离散状态随机模型的明确分析的定性支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验