Suppr超能文献

新型两种1,2-二取代苯并咪唑化合物的合成:它们的体外抗癌及计算机模拟分子对接研究

Synthesis of new two 1,2-disubstituted benzimidazole compounds: their in vitro anticancer and in silico molecular docking studies.

作者信息

Yavuz Sevtap Caglar

机构信息

Department of Medical Services and Technicians, Ilic Dursun Yildirim Vocational School, Erzincan Binali Yildirim University, Erzincan, Türkiye.

出版信息

BMC Chem. 2024 Aug 7;18(1):146. doi: 10.1186/s13065-024-01241-z.

Abstract

In this study, two new molecules were synthesized from the reaction of 2-methyl-1H-benzo[d]imidazole with aryl halides in the presence of a strong base. The structures newly of synthesized 1,2-disubstituted benzimidazole compounds were characterized using spectroscopic techniques (FT-IR, HNMR, CNMR) and chromatographic technique (LC/MS). For discovering an effective anticancer drug, the developed heterocyclic compounds were screened against three different human cancer cell lines (A549, DLD-1, and L929). The results demonstrated that of IC50 values of compound 2a were higher as compared to cisplatin for the A549 and DLD-1 cell lines. The frontier molecular orbital (FMO), and molecular electrostatic potential map (MEP) analyses were studied by using DFT (density functional theory) calculations at B3LYP/6-31G** level of theory. The molecular docking studies of the synthesized compound with lung cancer protein, PDB ID: 1M17, and colon cancer antigen proteins, PDB ID: 2HQ6 were performed to compare with experimental and theoretical data. Compound 2a had shown the best binding affinity with -6.6 kcal/mol. It was observed that the theoretical and experimental studies carried out supported each other.

摘要

在本研究中,2-甲基-1H-苯并[d]咪唑与芳基卤化物在强碱存在下反应合成了两种新分子。使用光谱技术(傅里叶变换红外光谱、核磁共振氢谱、核磁共振碳谱)和色谱技术(液相色谱/质谱)对新合成的1,2-二取代苯并咪唑化合物的结构进行了表征。为了发现一种有效的抗癌药物,针对三种不同的人类癌细胞系(A549、DLD-1和L929)对所开发的杂环化合物进行了筛选。结果表明,对于A549和DLD-1细胞系,化合物2a的IC50值比顺铂更高。通过在B3LYP/6-31G**理论水平上使用密度泛函理论(DFT)计算研究了前线分子轨道(FMO)和分子静电势图(MEP)分析。对合成的化合物与肺癌蛋白(PDB ID:1M17)和结肠癌抗原蛋白(PDB ID:2HQ6)进行了分子对接研究,以与实验和理论数据进行比较。化合物2a表现出最佳的结合亲和力,为-6.6千卡/摩尔。观察到所进行的理论和实验研究相互支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2c8/11308586/ae2e5154b5f1/13065_2024_1241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验