Suppr超能文献

从个体大脑结构预测脑机接口能力。

Prediction of brain-computer interface aptitude from individual brain structure.

机构信息

Department of Psychology I, University of Würzburg Würzburg, Germany ; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; Wilhelm-Schickard Institute for Computer Science, University of Tübingen Tübingen, Germany.

出版信息

Front Hum Neurosci. 2013 Apr 2;7:105. doi: 10.3389/fnhum.2013.00105. eCollection 2013.

Abstract

OBJECTIVE

Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary.

METHODS

We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance.

RESULTS

Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error).

CONCLUSIONS

Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance.

SIGNIFICANCE

This confirms that structural brain traits contribute to individual performance in BCI use.

摘要

目的

脑机接口(BCI)为运动系统受损的患者提供了一种非肌肉的交流通道。相当数量的 BCI 用户无法及时获得对 BCI 系统的自愿控制。这使得需要确定用户能力的方法成为必要。

方法

我们假设相关白质连接的完整性和连通性可以作为个体 BCI 性能的预测指标。因此,我们根据整体表现,对运动想象 BCI 用户的解剖扫描和 DTI 结构数据进行了分析,将其分为高 BCI 能力组和低 BCI 能力组。

结果

使用机器学习分类方法,我们确定了具有区分性的结构脑特征,并将最佳特征与个体 BCI 性能的连续测量相关联。每个参与者的能力组的预测都可以达到近乎完美的准确性(仅一个错误)。

结论

组织体积分析仅产生较差的分类结果。相比之下,大脑深部白质结构(如胼胝体、扣带和上额枕束)的结构完整性和髓鞘质量与个体 BCI 性能呈正相关。

意义

这证实了结构脑特征有助于 BCI 使用中的个体表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9746/3613602/4ddaac8c5a50/fnhum-07-00105-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验