Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
BMC Genomics. 2013 Apr 8;14:228. doi: 10.1186/1471-2164-14-228.
Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act.
We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers.
Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
全球范围内的生态系统正遭受人为影响的后果。例如,由于全球变暖导致的海水表面温度升高,珊瑚礁这一多样化的生态系统正受到全球性威胁。迄今为止的研究主要集中在确定遗传多样性上,即物种中基因的序列可变性,作为估计和预测珊瑚种群对气候变化相关环境变化的潜在适应反应的替代指标。然而,对自然基因表达变异的研究关注较少。这种变异被认为是进化过程中的一个重要因素,自然选择可以在这个过程中起作用。
我们将来自六个造礁珊瑚 Acropora millepora 珊瑚礁的珊瑚幼体在赫伦岛(大堡礁,GBR)的一个共同花园中进行了为期四周的驯化,以消除珊瑚幼体的任何特定地点的环境对其生理的影响。通过使用 cDNA 微阵列平台,我们检测到高水平的基因表达变异,六个珊瑚礁的珊瑚幼体中有 17%(488 个)的基因差异表达(jsFDR 校正,p < 0.01)。在差异表达的主要生物学过程类别中,包括运输、翻译、对刺激的反应、氧化还原过程和细胞凋亡。我们发现,转录谱与使用碳酸酐酶基因的内含子或微卫星位点标记特征化的群体的基因型没有对应关系。
我们的研究结果提供了证据,表明在共同花园中生长且没有与基因型身份对应的情况下,A. millepora 在转录组水平上具有很高的种间变异性。这一发现提醒我们,在评估实验基因表达差异时,需要考虑珊瑚礁之间的自然变异。本研究中检测到的高转录变异性在适应潜力和珊瑚礁表型可塑性的背景下进行了解释和讨论。这种变异是否会使珊瑚礁能够应对当前的挑战尚不清楚。