State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240, China.
Bioresour Technol. 2013 May;136:309-15. doi: 10.1016/j.biortech.2013.03.028. Epub 2013 Mar 13.
For economically feasible lignocellulosic ethanol production, it is crucial to obtain a robust strain and develop an efficient fermentation process. An earlier-screened yeast strain Pichia guilliermondii was adapted to corncob residues (CCR) hydrolysate and used for high titer ethanol production without any detoxification or external nutrient supplementation. With an optimized fed-batch strategy, the maximum ethanol titer and productivity reached 56.3 g/l and 0.47 g l(-1) h(-1), respectively. To further increase the ethanol productivity, the fed-batch process was repeated three times with cell reuse, and the maximum ethanol titer and productivity reached 51.2 g/l and 1.11 g l(-1) h(-1), respectively. The results demonstrated that the combination of fed-batch with repeated fermentation was effective in improving the fermentation efficiency and achieving high ethanol productivity from CCR. The reported system is considered promising for commercial production of bioethanol from biomass hydrolysate in the future.
为了实现经济可行的木质纤维素乙醇生产,获得一株健壮的菌株并开发出高效的发酵工艺至关重要。我们对一株早期筛选出的酵母菌株毕赤酵母(Pichia guilliermondii)进行了适应性改造,使其能够在未经解毒或添加外源营养物质的情况下利用玉米芯废渣水解液进行高浓度乙醇发酵。通过优化补料分批发酵策略,乙醇的最高浓度和生产强度分别达到 56.3 g/L 和 0.47 g l(-1) h(-1)。为了进一步提高乙醇的生产强度,我们重复进行了三次补料分批发酵实验,且细胞可重复使用,乙醇的最高浓度和生产强度分别达到 51.2 g/L 和 1.11 g l(-1) h(-1)。结果表明,补料分批发酵与重复发酵相结合可有效提高发酵效率,从玉米芯废渣中获得高浓度乙醇。该体系有望在未来实现利用生物质水解液进行商业规模的生物乙醇生产。