Suppr超能文献

使用熵特征和人工神经网络监测麻醉深度。

Monitoring the depth of anesthesia using entropy features and an artificial neural network.

机构信息

School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

J Neurosci Methods. 2013 Aug 15;218(1):17-24. doi: 10.1016/j.jneumeth.2013.03.008. Epub 2013 Apr 6.

Abstract

Monitoring the depth of anesthesia using an electroencephalogram (EEG) is a major ongoing challenge for anesthetists. The EEG is a recording of brain electrical activity, and it contains valuable information related to the different physiological states of the brain. This study proposes a novel automated method consisting of two steps for assessing anesthesia depth. Initially, the sample entropy and permutation entropy features were extracted from the EEG signal. Because EEG-derived parameters represent different aspects of the EEG features, it would be reasonable to use multiple parameters to assess the effect of the anesthetic. The sample entropy and permutation entropy features quantified the amount of complexity or irregularity in the EEG data and were conceptually simple, computationally efficient and artifact-resistant. Next, the extracted features were used as input for an artificial neural network, which was a data processing system based on the structure of a biological nervous system. The experimental results indicated that an overall accuracy of 88% could be obtained during sevoflurane anesthesia in 17 patients to classify the EEG data into awake, light, general and deep anesthetized states. In addition, this method yielded a classification accuracy of 92.4% to distinguish between awake and general anesthesia in an independent database of propofol and desflurane anesthesia in 129 patients. Considering the high accuracy of this method, a new EEG monitoring system could be developed to assist the anesthesiologist in estimating the depth of anesthesia in a rapid and accurate manner.

摘要

使用脑电图 (EEG) 监测麻醉深度是麻醉师面临的主要挑战。EEG 是对脑电活动的记录,其中包含与大脑不同生理状态相关的有价值信息。本研究提出了一种新的自动方法,该方法由评估麻醉深度的两个步骤组成。首先,从 EEG 信号中提取样本熵和排列熵特征。由于 EEG 衍生参数代表 EEG 特征的不同方面,使用多个参数来评估麻醉效果是合理的。样本熵和排列熵特征量化了 EEG 数据中的复杂度或不规则程度,其概念简单、计算效率高且抗伪差。接下来,提取的特征被用作人工神经网络的输入,人工神经网络是一种基于生物神经系统结构的数据处理系统。实验结果表明,在 17 名患者的七氟醚麻醉中,该方法可以获得 88%的总体准确率,将 EEG 数据分类为清醒、轻度、全身和深度麻醉状态。此外,该方法在 129 名接受丙泊酚和地氟醚麻醉的患者的独立数据库中,区分清醒和全身麻醉的准确率为 92.4%。考虑到该方法的高精度,可能会开发一种新的 EEG 监测系统,以帮助麻醉师快速准确地评估麻醉深度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验