Suppr超能文献

使用新型自适应神经模糊系统监测麻醉深度。

Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.

出版信息

IEEE J Biomed Health Inform. 2018 May;22(3):671-677. doi: 10.1109/JBHI.2017.2709841. Epub 2017 May 29.

Abstract

Accurate and noninvasive monitoring of the depth of anesthesia (DoA) is highly desirable. Since the anesthetic drugs act mainly on the central nervous system, the analysis of brain activity using electroencephalogram (EEG) is very useful. This paper proposes a novel automated method for assessing the DoA using EEG. First, 11 features including spectral, fractal, and entropy are extracted from EEG signal and then, by applying an algorithm according to exhaustive search of all subsets of features, a combination of the best features (Beta-index, sample entropy, shannon permutation entropy, and detrended fluctuation analysis) is selected. Accordingly, we feed these extracted features to a new neurofuzzy classification algorithm, adaptive neurofuzzy inference system with linguistic hedges (ANFIS-LH). This structure can successfully model systems with nonlinear relationships between input and output, and also classify overlapped classes accurately. ANFIS-LH, which is based on modified classical fuzzy rules, reduces the effects of the insignificant features in input space, which causes overlapping and modifies the output layer structure. The presented method classifies EEG data into awake, light, general, and deep states during anesthesia with sevoflurane in 17 patients. Its accuracy is 92% compared to a commercial monitoring system (response entropy index) successfully. Moreover, this method reaches the classification accuracy of 93% to categorize EEG signal to awake and general anesthesia states by another database of propofol and volatile anesthesia in 50 patients. To sum up, this method is potentially applicable to a new real-time monitoring system to help the anesthesiologist with continuous assessment of DoA quickly and accurately.

摘要

准确且无创的麻醉深度监测(DoA)是非常需要的。由于麻醉药物主要作用于中枢神经系统,因此使用脑电图(EEG)分析脑活动非常有用。本文提出了一种使用 EEG 评估 DoA 的新自动化方法。首先,从 EEG 信号中提取包括谱、分形和熵在内的 11 个特征,然后通过应用根据特征子集的穷举搜索算法,选择最佳特征的组合(Beta-index、样本熵、Shannon 排列熵和去趋势波动分析)。相应地,我们将这些提取的特征输入到一个新的神经模糊分类算法,具有语言模糊(ANFIS-LH)的自适应神经模糊推理系统中。这种结构可以成功地对输入和输出之间存在非线性关系的系统进行建模,并且还可以准确地对重叠类进行分类。基于修改后的经典模糊规则的 ANFIS-LH 减少了输入空间中不显著特征的影响,这些特征会导致重叠并修改输出层结构。该方法将接受七氟醚麻醉的 17 名患者的 EEG 数据分类为清醒、轻度、全身和深度状态,其准确性与商业监测系统(反应熵指数)相比达到 92%。此外,该方法在接受丙泊酚和挥发性麻醉的 50 名患者的另一个数据库中,将 EEG 信号分类为清醒和全身麻醉状态的分类精度达到 93%。总之,该方法具有潜在的应用价值,可以帮助麻醉师快速准确地连续评估 DoA,以实现新的实时监测系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验