Lu Hui, McManus Jeffrey M, Chiel Hillel J
Department of Biology, Case Western Reserve University, USA.
J Vis Exp. 2013 Mar 25(73):50189. doi: 10.3791/50189.
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation or in vivo. This process can also be applied in other motor pools in Aplysia or in other animal systems.
在具有大型可识别神经元的动物(如软体动物)中,运动神经元群的分析是使用细胞内技术完成的。最近,我们开发了一种在加州海兔中对单个神经元进行细胞外刺激和记录的技术。我们现在描述一种使用该技术来唯一识别和表征运动神经元群内运动神经元的方案。这种细胞外技术具有优势。首先,细胞外电极可以通过鞘膜刺激和记录神经元,因此无需去除鞘膜。这样,在细胞外实验中神经元会比在细胞内实验中更健康。其次,如果通过适当固定鞘膜来旋转神经节,细胞外电极可以接触神经节两侧的神经元,这使得在同一标本中识别多个神经元更容易、更高效。第三,细胞外电极不需要穿透细胞,因此可以在神经元之间轻松来回移动,对它们造成的损伤较小。当人们试图在可能仅持续几分钟的重复运动模式期间记录多个神经元时,这一点尤其有用。第四,在肌肉运动过程中,细胞外电极比细胞内电极更灵活。细胞内电极在肌肉收缩时可能会拔出并损坏神经元。相比之下,由于细胞外电极被轻轻压在神经元上方的鞘膜上,它们在肌肉收缩期间通常会停留在同一个神经元上方,因此可以用于更完整的标本。为了使用细胞外电极唯一识别运动神经元群(特别是加州海兔中的I1/I3肌肉)中的运动神经元,可以使用不需要细胞内测量的特征作为标准:细胞体大小和位置、轴突投射以及肌肉支配。对于用于说明该技术的特定运动神经元群,我们从颊神经2和3进行记录以测量轴突投射,并测量I1/I3肌肉的收缩力以确定单个运动神经元的肌肉支配模式。我们展示了首先使用肌肉支配来识别运动神经元,然后在运动模式期间表征其时间,创建一种简化诊断方法以进行快速识别的完整过程。这种简化且更快速的诊断方法对于更完整的标本更具优势,例如在悬浮的颊块标本或体内。这个过程也可以应用于加州海兔的其他运动神经元群或其他动物系统。