Zhao Yali, Wang Dan O, Martin Kelsey C
Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA.
J Vis Exp. 2009 Jun 8(28):1355. doi: 10.3791/1355.
The nervous system of the marine mollusk Aplysia californica is relatively simple, consisting of approximately 20,000 neurons. The neurons are large (up to 1 mm in diameter) and identifiable, with distinct sizes, shapes, positions and pigmentations, and the cell bodies are externally exposed in five paired ganglia distributed throughout the body of the animal. These properties have allowed investigators to delineate the circuitry underlying specific behaviors in the animal. The monosynaptic connection between sensory and motor neurons is a central component of the gill-withdrawal reflex in the animal, a simple defensive reflex in which the animal withdraws its gill in response to tactile stimulation of the siphon. This reflex undergoes forms of non-associative and associative learning, including sensitization, habituation and classical conditioning. Of particular benefit to the study of synaptic plasticity, the sensory-motor synapse can be reconstituted in culture, where well-characterized stimuli elicit forms of plasticity that have direct correlates in the behavior of the animal. Specifically, application of serotonin produces a synaptic strengthening that, depending on the application protocol, lasts for minutes (short-term facilitation), hours (intermediate-term facilitation) or days (long-term facilitation). In contrast, application of the peptide transmitter FMRFamide produces a synaptic weakening or depression that, depending on the application protocol, can last from minutes to days (long-term depression). The large size of the neurons allows for repeated sharp electrode recording of synaptic strength over periods of days together with microinjection of expression vectors, siRNAs and other compounds to target specific signaling cascades and molecules and thereby identify the molecular and cell biological steps that underlie the changes in synaptic efficacy. An additional advantage of the Aplysia culture system comes from the fact that the neurons demonstrate synapse-specificity in culture. Thus, sensory neurons do not form synapses with themselves (autapses) or with other sensory neurons, nor do they form synapses with non-target identified motor neurons in culture. The varicosities, sites of synaptic contact between sensory and motor neurons, are large enough (2-7 microns in diameter) to allow synapse formation (as well as changes in synaptic morphology) with target motor neurons to be studied at the light microscopic level. In this video, we demonstrate each step of preparing sensory-motor neuron cultures, including anesthetizing adult and juvenile Aplysia, dissecting their ganglia, protease digestion of the ganglia, removal of the connective tissue by microdissection, identification of both sensory and motor neurons and removal of each cell type by microdissection, plating of the motor neuron, addition of the sensory neuron and manipulation of the sensory neurite to form contact with the cultured motor neuron.
海兔(加州海兔)的神经系统相对简单,由大约20,000个神经元组成。这些神经元体积较大(直径可达1毫米)且易于识别,具有不同的大小、形状、位置和色素沉着,其细胞体在分布于动物全身的五对神经节中向外暴露。这些特性使研究人员能够描绘出该动物特定行为背后的神经回路。感觉神经元和运动神经元之间的单突触连接是该动物鳃收缩反射的核心组成部分,鳃收缩反射是一种简单的防御反射,动物在虹吸管受到触觉刺激时会收缩其鳃。这种反射会经历非联合性和联合性学习的形式,包括敏感化、习惯化和经典条件作用。对突触可塑性研究特别有益的是,感觉-运动突触可以在培养物中重建,在那里特征明确的刺激会引发与动物行为直接相关的可塑性形式。具体而言,血清素的应用会产生突触增强,根据应用方案的不同,这种增强可持续数分钟(短期易化)、数小时(中期易化)或数天(长期易化)。相比之下,肽递质FMRF酰胺的应用会产生突触减弱或抑制,根据应用方案的不同,其持续时间可从数分钟到数天(长期抑制)。神经元的大尺寸使得在数天时间内可以反复使用尖锐电极记录突触强度,同时可以显微注射表达载体、小干扰RNA和其他化合物来靶向特定的信号级联和分子,从而确定突触效能变化背后的分子和细胞生物学步骤。海兔培养系统的另一个优势在于,神经元在培养物中表现出突触特异性。因此,感觉神经元不会与自身(自突触)或其他感觉神经元形成突触,在培养物中也不会与未识别的非靶标运动神经元形成突触。感觉神经元和运动神经元之间的突触接触位点——曲张体足够大(直径为2 - 7微米),可以在光学显微镜水平上研究与靶标运动神经元的突触形成(以及突触形态的变化)。在本视频中,我们展示了制备感觉-运动神经元培养物的每一个步骤,包括麻醉成年和幼年海兔、解剖它们的神经节、用蛋白酶消化神经节、通过显微解剖去除结缔组织、识别感觉神经元和运动神经元以及通过显微解剖分离每种细胞类型、接种运动神经元、添加感觉神经元以及操纵感觉神经突以使其与培养的运动神经元形成接触。