Suppr超能文献

磁刺激诱导状态依赖性神经抑制的细胞机制。

Cellular mechanisms underlying state-dependent neural inhibition with magnetic stimulation.

机构信息

Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.

Engineering Program, Loyola University Chicago, Chicago, IL, USA.

出版信息

Sci Rep. 2022 Jul 15;12(1):12131. doi: 10.1038/s41598-022-16494-8.

Abstract

Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity in a state-dependent manner. It inhibited neurons in slow-firing states, but spared neurons from fast-firing states, when the same magnetic stimuli were applied. Using a multi-compartment NEURON model, we found that dynamics of voltage-dependent sodium and potassium channels were significantly altered by the magnetic stimulation in the slow-firing neurons, but not in the fast-firing neurons. Variability in neural activity should be monitored and explored to optimize the outcome of magnetic stimulation in basic laboratory research and clinical practice. If selective stimulation can be programmed to match the appropriate neural state, prosthetic implants and brain-machine interfaces can be designed based on these concepts to achieve optimal results.

摘要

目前,研究人员正在临床和实验室环境中探索新型磁场神经调控刺激方案。有新证据表明,神经系统的激活状态对磁刺激的效果有重要影响,但状态相关性的潜在细胞和分子机制尚未被完全研究清楚。我们最近的研究表明,当神经元处于低活跃状态时,高频磁场刺激可以抑制其活性。在本文中,我们使用新型微线圈技术,通过向单个神经元施加磁场来研究状态相关性的神经调制。高频磁场刺激以状态相关性的方式抑制单个神经元的活性。当施加相同的磁场刺激时,它抑制了慢发放神经元,但对快发放神经元没有影响。使用多室 NEURON 模型,我们发现磁场刺激显著改变了慢发放神经元中电压门控钠离子和钾离子通道的动力学,但对快发放神经元没有影响。在基础实验室研究和临床实践中,应该监测和探索神经活动的可变性,以优化磁刺激的效果。如果可以编程选择性刺激以匹配适当的神经状态,那么可以根据这些概念设计假体植入物和脑机接口,以达到最佳效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4339/9287388/f530567a6609/41598_2022_16494_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验