Suppr超能文献

关于探索构效关系。

On exploring structure-activity relationships.

作者信息

Guha Rajarshi

机构信息

NIH Center for Advancing Translational Science, Rockville, MD, USA.

出版信息

Methods Mol Biol. 2013;993:81-94. doi: 10.1007/978-1-62703-342-8_6.

Abstract

Understanding structure-activity relationships (SARs) for a given set of molecules allows one to rationally explore chemical space and develop a chemical series optimizing multiple physicochemical and biological properties simultaneously, for instance, improving potency, reducing toxicity, and ensuring sufficient bioavailability. In silico methods allow rapid and efficient characterization of SARs and facilitate building a variety of models to capture and encode one or more SARs, which can then be used to predict activities for new molecules. By coupling these methods with in silico modifications of structures, one can easily prioritize large screening decks or even generate new compounds de novo and ascertain whether they belong to the SAR being studied. Computational methods can provide a guide for the experienced user by integrating and summarizing large amounts of preexisting data to suggest useful structural modifications. This chapter highlights the different types of SAR modeling methods and how they support the task of exploring chemical space to elucidate and optimize SARs in a drug discovery setting. In addition to considering modeling algorithms, I briefly discuss how to use databases as a source of SAR data to inform and enhance the exploration of SAR trends. I also review common modeling techniques that are used to encode SARs, recent work in the area of structure-activity landscapes, the role of SAR databases, and alternative approaches to exploring SAR data that do not involve explicit model development.

摘要

了解给定分子集的构效关系(SARs)可以使人们合理地探索化学空间,并开发出一个能同时优化多种物理化学和生物学性质的化学系列,例如,提高效力、降低毒性并确保足够的生物利用度。计算机模拟方法能够快速、高效地表征构效关系,并有助于构建各种模型来捕捉和编码一种或多种构效关系,进而可用于预测新分子的活性。通过将这些方法与结构的计算机模拟修饰相结合,人们可以轻松地对大型筛选库进行优先级排序,甚至从头生成新化合物,并确定它们是否属于正在研究的构效关系。计算方法可以通过整合和总结大量已有的数据来为有经验的用户提供指导,以建议有用的结构修饰。本章重点介绍了不同类型的构效关系建模方法,以及它们如何支持在药物发现环境中探索化学空间以阐明和优化构效关系的任务。除了考虑建模算法外,我还简要讨论了如何将数据库用作构效关系数据的来源,以了解和加强对构效关系趋势的探索。我还回顾了用于编码构效关系的常见建模技术、构效关系景观领域的最新工作、构效关系数据库的作用,以及不涉及显式模型开发的探索构效关系数据的替代方法。

相似文献

1
On exploring structure-activity relationships.关于探索构效关系。
Methods Mol Biol. 2013;993:81-94. doi: 10.1007/978-1-62703-342-8_6.
3
4
QSAR Methods.定量构效关系方法
Methods Mol Biol. 2016;1425:1-20. doi: 10.1007/978-1-4939-3609-0_1.
7
Reaching for the bright StARs in chemical space.在化学空间中追寻闪亮的 STARs。
Drug Discov Today. 2019 Nov;24(11):2162-2169. doi: 10.1016/j.drudis.2019.09.013. Epub 2019 Sep 23.
9
QSAR Methods.定量构效关系方法
Methods Mol Biol. 2022;2425:1-26. doi: 10.1007/978-1-0716-1960-5_1.

引用本文的文献

4
Target Engagement Assays in Early Drug Discovery.早期药物发现中的靶点结合分析
J Med Chem. 2025 Jun 26;68(12):12331-12368. doi: 10.1021/acs.jmedchem.4c03115. Epub 2025 Jun 4.

本文引用的文献

1
Does your model weigh the same as a duck?你的模型和一只鸭子一样重吗?
J Comput Aided Mol Des. 2012 Jan;26(1):57-67. doi: 10.1007/s10822-011-9530-1. Epub 2011 Dec 21.
2
The inevitable QSAR renaissance.必然的定量构效关系复兴。
J Comput Aided Mol Des. 2012 Jan;26(1):35-8. doi: 10.1007/s10822-011-9495-0. Epub 2011 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验