Suppr超能文献

数字炼金术:小分子药物发现中机器学习与深度学习的兴起

Digital Alchemy: The Rise of Machine and Deep Learning in Small-Molecule Drug Discovery.

作者信息

Manan Abdul, Baek Eunhye, Ilyas Sidra, Lee Donghun

机构信息

Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.

RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

出版信息

Int J Mol Sci. 2025 Jul 16;26(14):6807. doi: 10.3390/ijms26146807.

Abstract

This review provides a comprehensive analysis of the transformative impact of artificial intelligence (AI) and machine learning (ML) on modern drug design, specifically focusing on how these advanced computational techniques address the inherent limitations of traditional small-molecule drug design methodologies. It begins by outlining the historical challenges of the drug discovery pipeline, including protracted timelines, exorbitant costs, and high clinical failure rates. Subsequently, it examines the core principles of structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS), establishing the critical bottlenecks that have historically impeded efficient drug development. The central sections elucidate how cutting-edge ML and deep learning (DL) paradigms, such as generative models and reinforcement learning, are revolutionizing chemical space exploration, enhancing binding affinity prediction, improving protein flexibility modeling, and automating critical design tasks. Illustrative real-world case studies demonstrating quantifiable accelerations in discovery timelines and improved success probabilities are presented. Finally, the review critically examines prevailing challenges, including data quality, model interpretability, ethical considerations, and evolving regulatory landscapes, while offering forward-looking critical perspectives on the future trajectory of AI-driven pharmaceutical innovation.

摘要

本综述全面分析了人工智能(AI)和机器学习(ML)对现代药物设计的变革性影响,特别关注这些先进的计算技术如何应对传统小分子药物设计方法的固有局限性。它首先概述了药物研发流程的历史挑战,包括漫长的时间线、高昂的成本和高临床失败率。随后,它研究了基于结构的虚拟筛选(SBVS)和基于配体的虚拟筛选(LBVS)的核心原理,确定了历史上阻碍高效药物开发的关键瓶颈。中间部分阐明了前沿的ML和深度学习(DL)范式,如生成模型和强化学习,如何正在彻底改变化学空间探索、增强结合亲和力预测、改善蛋白质柔性建模以及自动化关键设计任务。展示了可量化的发现时间线加速和提高成功概率的实际案例研究。最后,该综述批判性地审视了当前的挑战,包括数据质量、模型可解释性、伦理考量和不断演变的监管环境,同时对人工智能驱动的药物创新的未来轨迹提供前瞻性的批判性观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48c/12295739/2760235dc718/ijms-26-06807-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验