Manan Abdul, Baek Eunhye, Ilyas Sidra, Lee Donghun
Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Int J Mol Sci. 2025 Jul 16;26(14):6807. doi: 10.3390/ijms26146807.
This review provides a comprehensive analysis of the transformative impact of artificial intelligence (AI) and machine learning (ML) on modern drug design, specifically focusing on how these advanced computational techniques address the inherent limitations of traditional small-molecule drug design methodologies. It begins by outlining the historical challenges of the drug discovery pipeline, including protracted timelines, exorbitant costs, and high clinical failure rates. Subsequently, it examines the core principles of structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS), establishing the critical bottlenecks that have historically impeded efficient drug development. The central sections elucidate how cutting-edge ML and deep learning (DL) paradigms, such as generative models and reinforcement learning, are revolutionizing chemical space exploration, enhancing binding affinity prediction, improving protein flexibility modeling, and automating critical design tasks. Illustrative real-world case studies demonstrating quantifiable accelerations in discovery timelines and improved success probabilities are presented. Finally, the review critically examines prevailing challenges, including data quality, model interpretability, ethical considerations, and evolving regulatory landscapes, while offering forward-looking critical perspectives on the future trajectory of AI-driven pharmaceutical innovation.
本综述全面分析了人工智能(AI)和机器学习(ML)对现代药物设计的变革性影响,特别关注这些先进的计算技术如何应对传统小分子药物设计方法的固有局限性。它首先概述了药物研发流程的历史挑战,包括漫长的时间线、高昂的成本和高临床失败率。随后,它研究了基于结构的虚拟筛选(SBVS)和基于配体的虚拟筛选(LBVS)的核心原理,确定了历史上阻碍高效药物开发的关键瓶颈。中间部分阐明了前沿的ML和深度学习(DL)范式,如生成模型和强化学习,如何正在彻底改变化学空间探索、增强结合亲和力预测、改善蛋白质柔性建模以及自动化关键设计任务。展示了可量化的发现时间线加速和提高成功概率的实际案例研究。最后,该综述批判性地审视了当前的挑战,包括数据质量、模型可解释性、伦理考量和不断演变的监管环境,同时对人工智能驱动的药物创新的未来轨迹提供前瞻性的批判性观点。