Suppr超能文献

从活动悬崖到目标特异性评分模型和药效团假说。

From activity cliffs to target-specific scoring models and pharmacophore hypotheses.

机构信息

Center for Bioinformatics Hamburg (ZBH), University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany.

出版信息

ChemMedChem. 2011 Sep 5;6(9):1630-9, 1533. doi: 10.1002/cmdc.201100179. Epub 2011 Jul 12.

Abstract

The role of activity cliffs in drug discovery projects is certainly two-edged: on the one hand, they often lead to the failure of QSAR modeling techniques; on the other, they are highly valuable for identifying key aspects of SARs. In the presence of activity cliffs the results of purely ligand-based QSAR approaches often remain puzzling, and the resulting models have limited predictive power. Herein we present a new approach for the identification of structure-based activity cliffs (ISAC). It uses the valuable information of activity cliffs in a structure-based design scenario by analyzing interaction energies of protein-ligand complexes. Using the relative frequency at which a protein atom is involved in activity cliff events, we introduce a novel visualization of hot spots in the active site of a protein. The ISAC approach supports the medicinal chemist in elucidating the key interacting atoms of the binding site and facilitates the development of pharmacophore hypotheses. The hot spot visualization can be applied to small data sets in early project phases as well as in the lead optimization process. Based on the ISAC approach, we developed a method to derive target-specific scoring functions and pharmacophore constraints, which were validated on independent external data sets in virtual screening experiments. The activity-cliff-based approach shows an improved enrichment over the generic empirical scoring function for various protein targets in the validation set.

摘要

活性悬崖在药物发现项目中的作用确实是一把双刃剑

一方面,它们经常导致 QSAR 建模技术的失败;另一方面,它们对于识别 SAR 的关键方面具有很高的价值。在存在活性悬崖的情况下,基于配体的 QSAR 方法的结果往往仍然令人费解,并且得到的模型预测能力有限。在此,我们提出了一种用于识别基于结构的活性悬崖(ISAC)的新方法。它通过分析蛋白质-配体复合物的相互作用能,在基于结构的设计场景中利用活性悬崖的有价值信息。我们使用蛋白质原子参与活性悬崖事件的相对频率,引入了一种新的蛋白质活性部位热点的可视化方法。ISAC 方法支持药物化学家阐明结合部位的关键相互作用原子,并促进药效团假说的发展。热点可视化可应用于早期项目阶段的小数据集以及先导优化过程。基于 ISAC 方法,我们开发了一种方法来推导针对特定目标的评分函数和药效团约束,这些方法在虚拟筛选实验中针对独立的外部数据集进行了验证。在验证集中,基于活性悬崖的方法在各种蛋白质靶标上的富集度优于通用经验评分函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验