Am J Epidemiol. 2013 May 1;177(9):870-81. doi: 10.1093/aje/kwt041. Epub 2013 Apr 7.
Although socioeconomic position is conceptualized by social epidemiologists as a multidimensional construct, most research on socioeconomic disparities in health uses a limited set of observable indicators (e.g., educational attainment, household income, or occupational class) and typically analyzes and reports gradients in relation to one measure at a time. Societal changes in economic structures over time, however, can lead to changes in distributions of and associations between socioeconomic indicators, as has occurred with income returns to education in the United States over the last 50 years. Consequently, temporal comparisons of socioeconomic disparities from repeated cross-sectional surveys can be affected, particularly when salient dimensions of socioeconomic position are unobserved. We discuss this phenomenon within the framework of measurement error and identify sources of variation that can make identification of socioeconomic change difficult. Using simulations, we explore the utility of the quantile, slope index of inequality, and relative distribution approaches to minimizing bias in temporal comparisons and find that these methods yield correct inferences about temporal change only under limited conditions. We contrast these approaches with the use of an imputation model when validation data for the unobserved socioeconomic indicator exist. We discuss implications for analyzing changing socioeconomic health disparities over time.
虽然社会流行病学家长期以来将社会经济地位概念化为一个多维结构,但大多数关于健康方面的社会经济差异的研究都使用了有限的一组可观察指标(例如,教育程度、家庭收入或职业阶层),并且通常分析和报告一次与一个指标相关的梯度。然而,随着时间的推移,经济结构的社会变化会导致社会经济指标之间的分布和关联发生变化,正如过去 50 年来美国教育收入回报所发生的那样。因此,来自重复横断面调查的社会经济差异的时间比较可能会受到影响,尤其是当社会经济地位的重要维度未被观察到时。我们在测量误差的框架内讨论了这一现象,并确定了可能使社会经济变化难以识别的变异来源。我们使用模拟探讨了分位数、不平等斜率指数和相对分布方法在最小化时间比较偏差中的效用,发现只有在有限条件下,这些方法才能对时间变化做出正确的推断。我们将这些方法与在未观察到的社会经济指标存在验证数据时使用的插补模型进行了对比。我们讨论了随着时间的推移分析不断变化的社会经济健康差异的影响。