Beijing Normal University-Hong Kong Baptist University, United International College, Zhuhai 519085, China.
Comput Math Methods Med. 2013;2013:469373. doi: 10.1155/2013/469373. Epub 2013 Mar 14.
This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error distribution and right censored survival data. The method is based on the Buckley-James (1979) estimating equation. It inherits some appealing properties of the complete data empirical likelihood method. For example, it does not require variance estimation which is problematic for the Buckley-James estimator. We also extend our method to incorporate auxiliary information. We compare our method with the synthetic data empirical likelihood of Li and Wang (2003) using simulations. We also illustrate our method using Stanford heart transplantation data.
本文针对完全未知误差分布和右删失生存数据的半参数线性回归提出了一种新的经验似然方法。该方法基于 Buckley-James(1979)估计方程,继承了完全数据经验似然方法的一些吸引人的特性。例如,它不需要方差估计,而这对于 Buckley-James 估计器来说是有问题的。我们还将我们的方法扩展到包含辅助信息。我们使用模拟比较了我们的方法和 Li 和 Wang(2003)的合成数据经验似然。我们还使用斯坦福心脏移植数据说明了我们的方法。