Suppr超能文献

具有右删失数据的广义线性模型中的稳健估计与偏差校正经验似然

Robust estimation and bias-corrected empirical likelihood in generalized linear models with right censored data.

作者信息

Xue Liugen, Xie Junshan, Yang Xiaohui

机构信息

School of Mathematics and Statistics, Henan University, Kaifeng, People's Republic of China.

出版信息

J Appl Stat. 2023 Nov 3;51(11):2197-2213. doi: 10.1080/02664763.2023.2277117. eCollection 2024.

Abstract

In this paper, we study the robust estimation and empirical likelihood for the regression parameter in generalized linear models with right censored data. A robust estimating equation is proposed to estimate the regression parameter, and the resulting estimator has consistent and asymptotic normality. A bias-corrected empirical log-likelihood ratio statistic of the regression parameter is constructed, and it is shown that the statistic converges weakly to a standard distribution. The result can be directly used to construct the confidence region of regression parameter. We use the bias correction method to directly calibrate the empirical log-likelihood ratio, which does not need to be multiplied by an adjustment factor. We also propose a method for selecting the tuning parameters in the loss function. Simulation studies show that the estimator of the regression parameter is robust and the bias-corrected empirical likelihood is better than the normal approximation method. An example of a real dataset from Alzheimer's disease studies shows that the proposed method can be applied in practical problems.

摘要

在本文中,我们研究了具有右删失数据的广义线性模型中回归参数的稳健估计和经验似然。提出了一个稳健的估计方程来估计回归参数,所得估计量具有一致性和渐近正态性。构建了回归参数的偏差校正经验对数似然比统计量,并证明该统计量弱收敛于标准分布。该结果可直接用于构建回归参数的置信区域。我们使用偏差校正方法直接校准经验对数似然比,无需乘以调整因子。我们还提出了一种在损失函数中选择调谐参数的方法。模拟研究表明,回归参数的估计量是稳健的,偏差校正经验似然优于正态近似方法。来自阿尔茨海默病研究的一个真实数据集的例子表明,所提出的方法可应用于实际问题。

相似文献

2
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
3
Empirical Likelihood for Censored Linear Regression and Variable Selection.删失线性回归与变量选择的经验似然法
Scand Stat Theory Appl. 2015 Sep;42(3):798-812. doi: 10.1111/sjos.12137. Epub 2015 Jan 27.

本文引用的文献

1
Empirical Likelihood for Censored Linear Regression and Variable Selection.删失线性回归与变量选择的经验似然法
Scand Stat Theory Appl. 2015 Sep;42(3):798-812. doi: 10.1111/sjos.12137. Epub 2015 Jan 27.
2
Robust Variable Selection with Exponential Squared Loss.基于指数平方损失的稳健变量选择
J Am Stat Assoc. 2013 Apr 1;108(502):632-643. doi: 10.1080/01621459.2013.766613.
4
Censored Median Regression and Profile Empirical Likelihood.截尾中位数回归与轮廓经验似然
Stat Methodol. 2007 Oct;4(4):493-503. doi: 10.1016/j.stamet.2007.05.002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验