Xue Liugen, Xie Junshan, Yang Xiaohui
School of Mathematics and Statistics, Henan University, Kaifeng, People's Republic of China.
J Appl Stat. 2023 Nov 3;51(11):2197-2213. doi: 10.1080/02664763.2023.2277117. eCollection 2024.
In this paper, we study the robust estimation and empirical likelihood for the regression parameter in generalized linear models with right censored data. A robust estimating equation is proposed to estimate the regression parameter, and the resulting estimator has consistent and asymptotic normality. A bias-corrected empirical log-likelihood ratio statistic of the regression parameter is constructed, and it is shown that the statistic converges weakly to a standard distribution. The result can be directly used to construct the confidence region of regression parameter. We use the bias correction method to directly calibrate the empirical log-likelihood ratio, which does not need to be multiplied by an adjustment factor. We also propose a method for selecting the tuning parameters in the loss function. Simulation studies show that the estimator of the regression parameter is robust and the bias-corrected empirical likelihood is better than the normal approximation method. An example of a real dataset from Alzheimer's disease studies shows that the proposed method can be applied in practical problems.
在本文中,我们研究了具有右删失数据的广义线性模型中回归参数的稳健估计和经验似然。提出了一个稳健的估计方程来估计回归参数,所得估计量具有一致性和渐近正态性。构建了回归参数的偏差校正经验对数似然比统计量,并证明该统计量弱收敛于标准分布。该结果可直接用于构建回归参数的置信区域。我们使用偏差校正方法直接校准经验对数似然比,无需乘以调整因子。我们还提出了一种在损失函数中选择调谐参数的方法。模拟研究表明,回归参数的估计量是稳健的,偏差校正经验似然优于正态近似方法。来自阿尔茨海默病研究的一个真实数据集的例子表明,所提出的方法可应用于实际问题。