Suppr超能文献

压力张量的色散长程校正的影响:重新审视 Lennard-Jones 系统的气液界面性质。

Effect of dispersive long-range corrections to the pressure tensor: the vapour-liquid interfacial properties of the Lennard-Jones system revisited.

作者信息

Martínez-Ruiz F J, Blas F J, Mendiboure B, Moreno-Ventas Bravo A I

机构信息

Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva, Spain.

Laboratoire des Fluides Complexes et leurs Réservoirs, UMR5150, Université de Pau et des Pays de l'Adour, B. P. 1155, Pau Cedex 64014, France.

出版信息

J Chem Phys. 2014 Nov 14;141(18):184701. doi: 10.1063/1.4900773.

Abstract

We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264-6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r(c) = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r(c) = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases, the width of the tangential microscopic component of the pressure tensor profile increases, and the surface tension increases as the cutoff distance is larger. We have also checked the effect of the impulsive contribution to the pressure due to the discontinuity of the intermolecular interaction potential when it is cut. If this contribution is not accounted for in the calculation of the microscopic components of the pressure tensor, incorrect values of both components as well as a wrong structure along the vapour-liquid interface are obtained.

摘要

我们提出对Janeček [《物理化学杂志B》110, 6264 - 6269 (2006)]的非均匀长程修正改进版进行扩展,该改进版由MacDowell和Blas [《化学物理杂志》131, 074705 (2009)]近期提出,以考虑球形、刚性和柔性分子体系的分子间势能,处理色散长程修正对压力张量微观分量的贡献。我们在正则系综中进行了蒙特卡罗模拟,以获得具有不同截止距离r(c) = 2.5、3、4和5σ的球形 Lennard-Jones 分子的界面性质。此外,我们还考虑了截止距离r(c) = 2.5和3σ,并结合了本文提出的非均匀长程修正。压力张量的法向和切向微观分量通过机械或维里途径结合欧文和柯克伍德的方法获得,而宏观分量则使用de Miguel和Jackson [《化学物理杂志》125, 164109 (2006)]提出的体积微扰热力学途径计算。气液界面张力使用三种不同方法进行评估,即欧文 - 柯克伍德方法、压力张量宏观分量之间的差值以及测试区域方法。除了压力张量和表面张力外,我们还获得了密度分布、共存密度、蒸气压、临界温度和密度以及界面厚度随温度的变化关系,特别关注截止距离和长程修正对这些性质的影响。根据我们的结果,增加截止距离(在固定温度下)的主要影响是使气液界面变锐,降低蒸气压,并增加双相共存区域的宽度。结果,界面厚度减小,压力张量轮廓切向微观分量的宽度增加,并且表面张力随着截止距离增大而增加。我们还检查了分子间相互作用势截断时由于其不连续性对压力的脉冲贡献的影响。如果在压力张量微观分量的计算中不考虑此贡献,则会得到两个分量的错误值以及沿气液界面的错误结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验