Arnold Anton, Kim Jinmyong, Yao Xiaohua
Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstr. 8, A-1040 Wien, Austria.
J Math Anal Appl. 2012 Oct 1;394(1):139-151. doi: 10.1016/j.jmaa.2012.04.070.
This paper investigates higher order wave-type equations of the form [Formula: see text], where the symbol [Formula: see text] is a real, non-degenerate elliptic polynomial of the order [Formula: see text] on [Formula: see text]. Using methods from harmonic analysis, we first establish global pointwise time-space estimates for a class of oscillatory integrals that appear as the fundamental solutions to the Cauchy problem of such wave equations. These estimates are then used to establish (pointwise-in-time) [Formula: see text] estimates on the wave solution in terms of the initial conditions.
本文研究形如[公式:见原文]的高阶波动型方程,其中符号[公式:见原文]是[公式:见原文]上阶数为[公式:见原文]的实非退化椭圆多项式。利用调和分析方法,我们首先为一类振荡积分建立全局逐点时空估计,这类振荡积分作为此类波动方程柯西问题的基本解出现。然后利用这些估计,根据初始条件建立波动解的(时间逐点)[公式:见原文]估计。