Faried Nashat, Shehata Enas M, El Zafarani Rasha M
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.
Department of Mathematics, Faculty of Science, Menoufia University, Shibin El-koom, Egypt.
J Inequal Appl. 2017;2017(1):198. doi: 10.1186/s13660-017-1471-3. Epub 2017 Aug 24.
In this paper, we prove the existence and uniqueness of solutions of the -Cauchy problem of second order -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy -difference equation.
在本文中,我们证明了二阶(\nabla -)差分方程([公式:见正文][公式:见正文])的(\nabla -)柯西问题解的存在性和唯一性,该方程定义在区间([公式:见正文])上的严格递增连续函数(的唯一不动点([公式:见正文])的邻域内。这些方程基于一般量子差分算子([公式:见正文]),其定义为([公式:见正文]),([公式:见正文])。当系数为常数时,我们还构造了二阶线性齐次(\nabla -)差分方程的基本解系,并研究了其特征方程根的不同情况。最后,我们推导了欧拉 - 柯西(\nabla -)差分方程。