Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA.
Front Endocrinol (Lausanne). 2013 Apr 9;4:46. doi: 10.3389/fendo.2013.00046. eCollection 2013.
Bioluminescence resonance energy transfer (BRET) is an improved version of earlier resonance energy transfer technologies used for the analysis of biomolecular protein interaction. BRET analysis can be applied to many transmembrane receptor classes, however the majority of the early published literature on BRET has focused on G protein-coupled receptor (GPCR) research. In contrast, there is limited scientific literature using BRET to investigate receptor tyrosine kinase (RTK) activity. This limited investigation is surprising as RTKs often employ dimerization as a key factor in their activation, as well as being important therapeutic targets in medicine, especially in the cases of cancer, diabetes, neurodegenerative, and respiratory conditions. In this review, we consider an array of studies pertinent to RTKs and other non-GPCR receptor protein-protein signaling interactions; more specifically we discuss receptor-protein interactions involved in the transmission of signaling communication. We have provided an overview of functional BRET studies associated with the RTK superfamily involving: neurotrophic receptors [e.g., tropomyosin-related kinase (Trk) and p75 neurotrophin receptor (p75NTR)]; insulinotropic receptors [e.g., insulin receptor (IR) and insulin-like growth factor receptor (IGFR)] and growth factor receptors [e.g., ErbB receptors including the EGFR, the fibroblast growth factor receptor (FGFR), the vascular endothelial growth factor receptor (VEGFR) and the c-kit and platelet-derived growth factor receptor (PDGFR)]. In addition, we review BRET-mediated studies of other tyrosine kinase-associated receptors including cytokine receptors, i.e., leptin receptor (OB-R) and the growth hormone receptor (GHR). It is clear even from the relatively sparse experimental RTK BRET evidence that there is tremendous potential for this technological application for the functional investigation of RTK biology.
生物发光共振能量转移(BRET)是早期共振能量转移技术的改进版本,用于分析生物分子蛋白质相互作用。BRET 分析可应用于许多跨膜受体类别,但早期发表的关于 BRET 的大多数文献都集中在 G 蛋白偶联受体(GPCR)研究上。相比之下,利用 BRET 研究受体酪氨酸激酶(RTK)活性的科学文献有限。这种有限的研究令人惊讶,因为 RTKs 通常将二聚化作为其激活的关键因素,并且作为医学中的重要治疗靶点,尤其是在癌症、糖尿病、神经退行性和呼吸系统疾病的情况下。在这篇综述中,我们考虑了一系列与 RTK 和其他非 GPCR 受体蛋白-蛋白信号转导相互作用相关的研究;更具体地说,我们讨论了参与信号转导通讯传递的受体-蛋白相互作用。我们提供了与 RTK 超家族相关的功能性 BRET 研究概述,涉及:神经营养受体[例如,原肌球蛋白相关激酶(Trk)和 p75 神经营养素受体(p75NTR)];胰岛素激动剂受体[例如,胰岛素受体(IR)和胰岛素样生长因子受体(IGFR)]和生长因子受体[例如,表皮生长因子受体(EGFR)、成纤维细胞生长因子受体(FGFR)、血管内皮生长因子受体(VEGFR)和 c-kit 和血小板衍生生长因子受体(PDGFR)]。此外,我们还回顾了其他酪氨酸激酶相关受体的 BRET 介导研究,包括细胞因子受体,即瘦素受体(OB-R)和生长激素受体(GHR)。即使从相对较少的实验 RTK BRET 证据来看,这种技术应用于 RTK 生物学的功能研究具有巨大的潜力。