Suppr超能文献

通过鸟苷酸环化酶实现 BAG 和 URX 神经元之间的平衡,控制线虫的寿命动态平衡。

Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans.

机构信息

Department of Molecular Pharmacology, Institute of Aging, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

EMBO J. 2013 May 29;32(11):1529-42. doi: 10.1038/emboj.2013.75. Epub 2013 Apr 12.

Abstract

Lifespan of C. elegans is affected by the nervous system; however, the underlying neural integration still remains unclear. In this work, we targeted an antagonistic neural system consisting of low-oxygen sensing BAG neurons and high-oxygen sensing URX neurons. While ablation of BAG neurons increases lifespan of C. elegans, ablation of URX neurons decreases lifespan. Genetic analysis revealed that BAG and URX neurons counterbalance each other via different guanylate cyclases (GCYs) to control lifespan balance. Lifespan-modulating effects of GCYs in these neurons are independent of the actions from insulin/IGF-1 signalling, germline signalling, sensory perception, or dietary restriction. Given the known gas-sensing property of these neurons, we profiled that lifespan of C. elegans is promoted under moderately low oxygen (4-12%) or moderately high carbon dioxide (5%) but inhibited under high-level oxygen (40%); however, these pro-longevity and anti-longevity effects are counteracted, respectively, by BAG and URX neurons via different GCYs. In conclusion, BAG and URX neurons work as a neural-regulatory system to counterbalance each other via different GCYs to control lifespan homeostasis.

摘要

秀丽隐杆线虫的寿命受神经系统影响,但潜在的神经整合仍不清楚。在这项工作中,我们针对由低氧感应 BAG 神经元和高氧感应 URX 神经元组成的拮抗神经系统。BAG 神经元的缺失会增加秀丽隐杆线虫的寿命,而 URX 神经元的缺失会减少寿命。遗传分析表明,BAG 和 URX 神经元通过不同的鸟苷酸环化酶 (GCYs) 相互制衡,以控制寿命平衡。这些神经元中 GCYs 的寿命调节作用独立于胰岛素/IGF-1 信号、生殖系信号、感觉感知或饮食限制。鉴于这些神经元已知的气体感应特性,我们分析了秀丽隐杆线虫在中度低氧 (4-12%) 或中度高二氧化碳 (5%) 下的寿命会延长,但在高氧 (40%) 下会受到抑制;然而,BAG 和 URX 神经元通过不同的 GCYs 分别抵消了这些延长寿命和抗寿命效应。总之,BAG 和 URX 神经元作为一个神经调节系统,通过不同的 GCYs 相互制衡,以控制寿命的动态平衡。

相似文献

1
Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans.
EMBO J. 2013 May 29;32(11):1529-42. doi: 10.1038/emboj.2013.75. Epub 2013 Apr 12.
3
EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.
PLoS Genet. 2013 May;9(5):e1003511. doi: 10.1371/journal.pgen.1003511. Epub 2013 May 9.
4
Life(span) in balance: oxygen fuels a sophisticated neural network for lifespan homeostasis in C. elegans.
EMBO J. 2013 May 29;32(11):1499-501. doi: 10.1038/emboj.2013.101. Epub 2013 Apr 30.
5
Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases.
Neuron. 2009 Mar 26;61(6):865-79. doi: 10.1016/j.neuron.2009.02.013.
6
Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in Caenorhabditis elegans.
PLoS Genet. 2018 Mar 26;14(3):e1007305. doi: 10.1371/journal.pgen.1007305. eCollection 2018 Mar.
8

引用本文的文献

1
Silencing the ASI gustatory neuron pair extends lifespan.
MicroPubl Biol. 2018 Jun 1;2018. doi: 10.17912/ft9e-7e37.
2
The role of carbon dioxide in nematode behaviour and physiology.
Parasitology. 2020 Jul;147(8):841-854. doi: 10.1017/S0031182019001422. Epub 2019 Oct 11.
3
Lifespan-regulating genes in .
NPJ Aging Mech Dis. 2016 Jun 2;2:16010. doi: 10.1038/npjamd.2016.10. eCollection 2016.
4
An Aversive Response to Osmotic Upshift in .
eNeuro. 2017 Apr 21;4(2). doi: 10.1523/ENEURO.0282-16.2017. eCollection 2017 Mar-Apr.
7
8
Decoding a neural circuit controlling global animal state in C. elegans.
Elife. 2015 Mar 11;4:e04241. doi: 10.7554/eLife.04241.
9
Hypothalamic microinflammation: a common basis of metabolic syndrome and aging.
Trends Neurosci. 2015 Jan;38(1):36-44. doi: 10.1016/j.tins.2014.10.002. Epub 2014 Nov 14.
10
Oxygen sensing neurons and neuropeptides regulate survival after anoxia in developing C. elegans.
PLoS One. 2014 Jun 26;9(6):e101102. doi: 10.1371/journal.pone.0101102. eCollection 2014.

本文引用的文献

2
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
3
Tonic signaling from O₂ sensors sets neural circuit activity and behavioral state.
Nat Neurosci. 2012 Mar 4;15(4):581-91. doi: 10.1038/nn.3061.
4
FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1.
Mech Ageing Dev. 2011 Oct;132(10):519-21. doi: 10.1016/j.mad.2011.08.006. Epub 2011 Aug 27.
5
Catecholamine receptor polymorphisms affect decision-making in C. elegans.
Nature. 2011 Apr 21;472(7343):313-8. doi: 10.1038/nature09821. Epub 2011 Mar 16.
6
HIF-1 modulates longevity and healthspan in a temperature-dependent manner.
Aging Cell. 2011 Apr;10(2):318-26. doi: 10.1111/j.1474-9726.2011.00672.x. Epub 2011 Feb 23.
7
Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):254-9. doi: 10.1073/pnas.1017354108. Epub 2010 Dec 20.
8
The genetics of ageing.
Nature. 2010 Mar 25;464(7288):504-12. doi: 10.1038/nature08980.
9
The use of FUdR can cause prolonged longevity in mutant nematodes.
Mech Ageing Dev. 2010 May;131(5):364-5. doi: 10.1016/j.mad.2010.03.002. Epub 2010 Mar 15.
10
The von Hippel Lindau tumor suppressor limits longevity.
J Am Soc Nephrol. 2009 Dec;20(12):2513-7. doi: 10.1681/ASN.2009050497. Epub 2009 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验