Suppr超能文献

利用响应面法与人工神经网络对培养条件进行优化及对解氨酶产生菌(蜡状芽孢杆菌 MTCC 1305)产酶条件的建模。

Optimization of cultural conditions using response surface methodology versus artificial neural network and modeling of L-glutaminase production by Bacillus cereus MTCC 1305.

机构信息

School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India.

出版信息

Bioresour Technol. 2013 Jun;137:261-9. doi: 10.1016/j.biortech.2013.03.086. Epub 2013 Mar 21.

Abstract

Response surface methodology and artificial neural network were used to optimize cultural conditions of L-glutaminase production from Bacillus cereus MTCC 1305. ANN model was superior to RSM model with higher value of coefficient of determination (99.97ANN>97.78RSM), predicted distribution coefficient (0.9992ANN>0.896RSM) and lower value of absolute average deviation (1.17%ANN<18.47%RSM). Optimum cultural conditions predicted by ANN were pH (7.5), fermentation time (40 h), temperature (34°C), inoculum size (2%), inoculum age (10 h) and agitation speed (175 rpm) with a maximum predicted production of L-glutaminase 666.97 U/l which was close to experimental production of L-glutaminase 667.23 U/l at simulated optimum cultural condition. The production of L-glutaminase was enhanced by 1.58-fold after optimization of cultural conditions. Simple kinetic models were developed using Logistic equation for cell growth, Luedeking Piret equation for L-glutaminase production and modified Luedeking Piret equation for glucose utilization indicating that L-glutaminase fermentation is non growth associated process.

摘要

响应面法和人工神经网络被用于优化蜡状芽孢杆菌 MTCC 1305 生产 L-谷氨酰胺酶的培养条件。ANN 模型比 RSM 模型具有更高的决定系数(99.97ANN>97.78RSM)、预测分配系数(0.9992ANN>0.896RSM)和更低的绝对平均偏差(1.17%ANN<18.47%RSM),因此更优越。ANN 预测的最佳培养条件为 pH(7.5)、发酵时间(40 h)、温度(34°C)、接种量(2%)、接种龄(10 h)和搅拌速度(175 rpm),在此条件下预测的 L-谷氨酰胺酶最大产量为 666.97 U/L,接近模拟最佳培养条件下的实验产量 667.23 U/L。优化培养条件后,L-谷氨酰胺酶的产量提高了 1.58 倍。使用 Logistic 方程对细胞生长、Luedeking Piret 方程对 L-谷氨酰胺酶生产和改良的 Luedeking Piret 方程对葡萄糖利用进行了简单的动力学模型开发,表明 L-谷氨酰胺酶发酵是非生长关联过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验