Cardoso D Alves, van den Beucken J J J P, Both L L H, Bender J, Jansen J A, Leeuwenburgh S C G
EMCM B.V., Middenkampweg 17, 6545 CH, Nijmegen, The Netherlands; Department of Biomaterials, Radboud University Nijmegen Medical Center, 6500 HB, Nijmegen, The Netherlands.
J Biomed Mater Res A. 2014 Mar;102(3):808-17. doi: 10.1002/jbm.a.34754. Epub 2013 Jun 12.
An emerging approach toward development of injectable, self-setting, and fully biodegradable bone substitutes involves the combination of injectable hydrogel matrices with a dispersed phase consisting of nanosized calcium phosphate particles. Here, novel injectable composites for bone regeneration have been developed based on the combination of ultrapure alginate as the matrix phase, crystalline CaP [monetite and poorly crystalline hydroxyapatite (HA)] powders as both a dispersed mineral phase and a source of calcium for cross-linking alginate, glucono-delta-lactone (GDL) as acidifier and glycerol as both plasticizer and temporary sequestrant. The composites were maximized with respect to CaP content to obtain the highest amount of osteoconductive filler. The viscoelastic and physicochemical properties of the precursor compounds and composites were analyzed using rheometry, elemental analysis (for calcium release and uptake), acidity [by measuring pH in simulated body fluid (SBF)], general biocompatibility (subcutaneous implantation in rabbits), and osteocompatibility (implantation in femoral condyle bone defect of rabbits). The gelation of the resulting composites could be controlled from seconds to tens of minutes by varying the solubility of the CaP phase (HA vs. monetite) or amount of GDL. All composites mineralized extensively in SBF for up to 11 days. In vivo, the composites also disintegrated upon implantation in subcutaneous or bone tissue, leaving behind less degradable but osteoconductive CaP particles. Although the composites need to be optimized with respect to the available amount of calcium for cross-linking of alginate, the beneficial bone response as observed in the in vivo studies render these gels promising for minimally invasive applications as bone-filling material.
一种用于开发可注射、自固化且完全可生物降解骨替代物的新兴方法,涉及将可注射水凝胶基质与由纳米级磷酸钙颗粒组成的分散相相结合。在此,基于超纯藻酸盐作为基质相、结晶性CaP[磷酸二氢钙和低结晶度羟基磷灰石(HA)]粉末作为分散的矿物相以及用于交联藻酸盐的钙源、葡萄糖酸 - δ - 内酯(GDL)作为酸化剂、甘油作为增塑剂和临时螯合剂的组合,开发了用于骨再生的新型可注射复合材料。使复合材料中的CaP含量最大化,以获得最高量的骨传导性填料。使用流变学、元素分析(用于钙的释放和吸收)、酸度[通过测量模拟体液(SBF)中的pH值]、一般生物相容性(在兔皮下植入)和骨相容性(在兔股骨髁骨缺损处植入)对前体化合物和复合材料的粘弹性和物理化学性质进行了分析。通过改变CaP相(HA与磷酸二氢钙)的溶解度或GDL的量,可将所得复合材料的凝胶化时间控制在几秒到几十分钟之间。所有复合材料在SBF中可广泛矿化长达11天。在体内,复合材料在皮下或骨组织中植入后也会分解,留下降解性较低但具有骨传导性的CaP颗粒。尽管复合材料需要在用于藻酸交联的钙的可用量方面进行优化,但体内研究中观察到的有益骨反应使这些凝胶有望作为骨填充材料用于微创应用。