Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA.
Nat Commun. 2013;4:1707. doi: 10.1038/ncomms2717.
Although highly active anti-retroviral therapy has resulted in remarkable decline in the morbidity and mortality in AIDS patients, inadequately low delivery of anti-retroviral drugs across the blood-brain barrier results in virus persistence. The capability of high-efficacy-targeted drug delivery and on-demand release remains a formidable task. Here we report an in vitro study to demonstrate the on-demand release of azidothymidine 5'-triphosphate, an anti-human immunodeficiency virus drug, from 30 nm CoFe2O4@BaTiO3 magneto-electric nanoparticles by applying a low alternating current magnetic field. Magneto-electric nanoparticles as field-controlled drug carriers offer a unique capability of field-triggered release after crossing the blood-brain barrier. Owing to the intrinsic magnetoelectricity, these nanoparticles can couple external magnetic fields with the electric forces in drug-carrier bonds to enable remotely controlled delivery without exploiting heat. Functional and structural integrity of the drug after the release was confirmed in in vitro experiments with human immunodeficiency virus-infected cells and through atomic force microscopy, spectrophotometry, Fourier transform infrared and mass spectrometry studies.
尽管高效抗逆转录病毒疗法显著降低了艾滋病患者的发病率和死亡率,但抗逆转录病毒药物在血脑屏障中的传递不足,导致病毒持续存在。高效靶向药物输送和按需释放的能力仍然是一项艰巨的任务。在这里,我们报告了一项体外研究,证明了通过施加低交流磁场,从 30nm CoFe2O4@BaTiO3 磁电纳米颗粒中按需释放抗人类免疫缺陷病毒药物叠氮胸苷 5'-三磷酸。磁电纳米颗粒作为场控药物载体,在穿过血脑屏障后具有独特的场触发释放能力。由于固有的磁电特性,这些纳米颗粒可以将外部磁场与药物载体键中的电力耦合起来,从而实现无需利用热量的远程控制释放。通过对感染人类免疫缺陷病毒的细胞进行体外实验以及原子力显微镜、分光光度法、傅里叶变换红外和质谱研究,证实了药物在释放后的功能和结构完整性。