Suppr超能文献

程序性异质性:细菌中的表观遗传机制。

Programmed heterogeneity: epigenetic mechanisms in bacteria.

机构信息

Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain.

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106.

出版信息

J Biol Chem. 2013 May 17;288(20):13929-13935. doi: 10.1074/jbc.R113.472274. Epub 2013 Apr 16.

Abstract

Contrary to the traditional view that bacterial populations are clonal, single-cell analysis reveals that phenotypic heterogeneity is common in bacteria. Formation of distinct bacterial lineages appears to be frequent during adaptation to harsh environments, including the colonization of animals by bacterial pathogens. Formation of bacterial subpopulations is often controlled by epigenetic mechanisms that generate inheritable phenotypic diversity without altering the DNA sequence. Such mechanisms are diverse, ranging from relatively simple feedback loops to complex self-perpetuating DNA methylation patterns.

摘要

与传统观点认为细菌群体是克隆的观点相反,单细胞分析表明表型异质性在细菌中很常见。在适应恶劣环境(包括细菌病原体对动物的定殖)的过程中,似乎经常会形成不同的细菌谱系。细菌亚群的形成通常受表观遗传机制控制,这些机制在不改变 DNA 序列的情况下产生可遗传的表型多样性。这些机制多种多样,从相对简单的反馈环到复杂的自我维持 DNA 甲基化模式不等。

相似文献

1
Programmed heterogeneity: epigenetic mechanisms in bacteria.
J Biol Chem. 2013 May 17;288(20):13929-13935. doi: 10.1074/jbc.R113.472274. Epub 2013 Apr 16.
2
Bistability and phase variation in Salmonella enterica.
Biochim Biophys Acta Gene Regul Mech. 2019 Jul;1862(7):752-758. doi: 10.1016/j.bbagrm.2018.01.003. Epub 2018 Jan 31.
3
The bacterial epigenome.
Nat Rev Microbiol. 2020 Jan;18(1):7-20. doi: 10.1038/s41579-019-0286-2. Epub 2019 Nov 14.
4
Epigenetic gene regulation in the bacterial world.
Microbiol Mol Biol Rev. 2006 Sep;70(3):830-56. doi: 10.1128/MMBR.00016-06.
5
DNA methyltransferases and epigenetic regulation in bacteria.
FEMS Microbiol Rev. 2016 Sep;40(5):575-91. doi: 10.1093/femsre/fuw023. Epub 2016 Jul 29.
6
Bistability, epigenetics, and bet-hedging in bacteria.
Annu Rev Microbiol. 2008;62:193-210. doi: 10.1146/annurev.micro.62.081307.163002.
7
Site-Specific Recombination - How Simple DNA Inversions Produce Complex Phenotypic Heterogeneity in Bacterial Populations.
Trends Genet. 2021 Jan;37(1):59-72. doi: 10.1016/j.tig.2020.09.004. Epub 2020 Sep 29.
9
A portable epigenetic switch for bistable gene expression in bacteria.
Sci Rep. 2019 Aug 2;9(1):11261. doi: 10.1038/s41598-019-47650-2.
10
Role of DNA methyltransferases in epigenetic regulation in bacteria.
Subcell Biochem. 2013;61:81-102. doi: 10.1007/978-94-007-4525-4_4.

引用本文的文献

2
Maximizing bacterial survival: integrating sense-and-respond and bet-hedging mechanisms.
Trends Microbiol. 2025 Jun 18. doi: 10.1016/j.tim.2025.05.010.
3
Epigenetic modifications and metabolic gene mutations drive resistance evolution in response to stimulatory antibiotics.
Mol Syst Biol. 2025 Mar;21(3):294-314. doi: 10.1038/s44320-025-00087-4. Epub 2025 Jan 16.
5
Synergistic phenotypic adaptations of motile purple sulphur bacteria Chromatium okenii during lake-to-laboratory domestication.
PLoS One. 2024 Oct 22;19(10):e0310265. doi: 10.1371/journal.pone.0310265. eCollection 2024.
6
Unravelling the Roles of Bacterial Nanomachines Bistability in Pathogens' Life Cycle.
Microorganisms. 2024 Sep 23;12(9):1930. doi: 10.3390/microorganisms12091930.
7
Changes in DNA methylation contribute to rapid adaptation in bacterial plant pathogen evolution.
PLoS Biol. 2024 Sep 20;22(9):e3002792. doi: 10.1371/journal.pbio.3002792. eCollection 2024 Sep.
8
Evolution of a bistable genetic system in fluctuating and nonfluctuating environments.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2322371121. doi: 10.1073/pnas.2322371121. Epub 2024 Aug 30.
9
Emerging methylation-based approaches in microbiome engineering.
Biotechnol Biofuels Bioprod. 2024 Jul 10;17(1):96. doi: 10.1186/s13068-024-02529-x.

本文引用的文献

1
STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length.
PLoS One. 2012;7(5):e36863. doi: 10.1371/journal.pone.0036863. Epub 2012 May 11.
3
Decoding Caulobacter development.
FEMS Microbiol Rev. 2012 Jan;36(1):193-205. doi: 10.1111/j.1574-6976.2011.00309.x. Epub 2011 Oct 24.
4
An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster.
PLoS Genet. 2011 Jul;7(7):e1002205. doi: 10.1371/journal.pgen.1002205. Epub 2011 Jul 28.
5
Lrp-DNA complex stability determines the level of ON cells in type P fimbriae phase variation.
Mol Microbiol. 2011 Sep;81(5):1286-99. doi: 10.1111/j.1365-2958.2011.07761.x. Epub 2011 Jul 20.
6
Epigenetic switches: can infidelity govern fate in microbes?
Curr Opin Microbiol. 2011 Apr;14(2):212-7. doi: 10.1016/j.mib.2010.12.004.
7
The design involved in PapI and Lrp regulation of the pap operon.
J Mol Biol. 2011 Jun 10;409(3):311-32. doi: 10.1016/j.jmb.2011.01.058. Epub 2011 Feb 19.
8
Phase variation: how to create and coordinate population diversity.
Curr Opin Microbiol. 2011 Apr;14(2):205-11. doi: 10.1016/j.mib.2011.01.002. Epub 2011 Feb 1.
9
An externally modulated, noise-driven switch for the regulation of SPI1 in Salmonella enterica serovar Typhimurium.
J Math Biol. 2011 Oct;63(4):637-62. doi: 10.1007/s00285-010-0385-1. Epub 2010 Nov 24.
10
Analysis of stochastic strategies in bacterial competence: a master equation approach.
PLoS Comput Biol. 2010 Nov 11;6(11):e1000985. doi: 10.1371/journal.pcbi.1000985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验