Tapp W N, Ottenweller J E, Natelson B H
Neuro-behavioral Unit, VA Medical Center, East Orange, NJ 07019.
Life Sci. 1990;46(24):1739-46. doi: 10.1016/0024-3205(90)90137-g.
Our earlier work showed that life in constant light prolonged life for hamsters with an inherited cardiomyopathy when compared to littermates spending their lives in 24 hour days (lights on 12 hr each day). This study was designed to begin evaluating the mechanism for this effect. 4-5.5 month old cardiomyopathic hamsters (CMHs) were placed on one of 5 different light-dark (LD) schedules for the remainder of their lives: (1) LD 12:12 (moderate total light exposure, short photoperiodic effect, 24 hr daylength); (2) LD 12:13 (same total light as LD 12:12, long photoperiodic effect, non-24 hr daylength); (3) LD 6:30 (less total light than LD 12:12, long photoperiodic effect, non-24 hr daylength); (4) LD 18:6 (more total light than LD 12:12, long photoperiodic effect, 24 hr daylength); (5) constant light (high total light exposure, long photoperiodic effect, non-24 hr daylength). CMHs living on the first two non-24 hr schedules lived longer than LD 12:12 controls. This study therefore suggests that manipulating the biological clock can have positive therapeutic consequences. However, in contrast to our earlier studies, hamsters living in constant light were not protected--perhaps because the hamsters began the treatment later in their lives or because their inherited disease was less severe than had been the case in hamsters used in previous studies. Defining the conditions that diminish or enhance the photobiological effect is an important challenge for future research.