Suppr超能文献

鉴定感染细胞中病毒蛋白的 RNA 结合伙伴。

Identification of RNA partners of viral proteins in infected cells.

机构信息

Unité de Génomique virale et Vaccination, Institut Pasteur, CNRS URA-3015, Paris, France.

出版信息

RNA Biol. 2013 Jun;10(6):944-56. doi: 10.4161/rna.24453. Epub 2013 Apr 1.

Abstract

RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of protein-protein and RNA-protein interactions within a cell to achieve efficient replication and spreading. Deciphering these interactions is essential to reach a comprehensive understanding of the viral infection process. To study RNA-protein complexes directly in infected cells, we developed a new approach based on recombinant viruses expressing tagged viral proteins that were purified together with their specific RNA partners. High-throughput sequencing was then used to identify these RNA molecules. As a proof of principle, this method was applied to measles virus nucleoprotein (MV-N). It revealed that in addition to full-length genomes, MV-N specifically interacted with a unique population of 5' copy-back defective interfering RNA genomes that we characterized. Such RNA molecules were able to induce strong activation of interferon-stimulated response element promoter preferentially via the cytoplasmic pattern recognition receptor RIG-I protein, demonstrating their biological functionality. Thus, this method provides a new platform to explore biologically active RNA-protein networks that viruses establish within infected cells.

摘要

RNA 病毒的基因组较小,仅能编码少数几种蛋白质,但它们仍能在细胞内建立复杂的蛋白质-蛋白质和 RNA-蛋白质相互作用网络,从而实现高效复制和传播。破译这些相互作用对于全面了解病毒感染过程至关重要。为了在感染细胞中直接研究 RNA-蛋白质复合物,我们开发了一种新方法,该方法基于表达标记病毒蛋白的重组病毒,这些蛋白与它们特定的 RNA 伴侣一起被纯化。然后,使用高通量测序来鉴定这些 RNA 分子。作为原理验证,该方法应用于麻疹病毒核蛋白 (MV-N)。结果表明,除了全长基因组外,MV-N 还特异性地与我们鉴定的独特的 5' 反向拷贝缺陷干扰 RNA 基因组群体相互作用。这些 RNA 分子能够通过细胞质模式识别受体 RIG-I 蛋白优先强烈地激活干扰素刺激反应元件启动子,证明了它们的生物学功能。因此,该方法为探索病毒在感染细胞内建立的具有生物学活性的 RNA-蛋白质网络提供了一个新的平台。

相似文献

1
Identification of RNA partners of viral proteins in infected cells.
RNA Biol. 2013 Jun;10(6):944-56. doi: 10.4161/rna.24453. Epub 2013 Apr 1.
2
Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses.
Mol Cell Proteomics. 2011 Dec;10(12):M110.007443. doi: 10.1074/mcp.M110.007443. Epub 2011 Sep 12.
5
The measles virus nucleocapsid protein tail domain is dispensable for viral polymerase recruitment and activity.
J Biol Chem. 2013 Oct 11;288(41):29943-53. doi: 10.1074/jbc.M113.503862. Epub 2013 Sep 3.

引用本文的文献

1
Applying Reverse Genetics to Study Measles Virus Interactions with the Host.
Methods Mol Biol. 2024;2808:89-103. doi: 10.1007/978-1-0716-3870-5_7.
2
Antagonism of ALAS1 by the Measles Virus V protein contributes to degradation of the mitochondrial network and promotes interferon response.
PLoS Pathog. 2023 Feb 21;19(2):e1011170. doi: 10.1371/journal.ppat.1011170. eCollection 2023 Feb.
3
: defective interfering viral genomes' detector for next-generation sequencing data.
RNA. 2018 Oct;24(10):1285-1296. doi: 10.1261/rna.066910.118. Epub 2018 Jul 16.
4
Original Chemical Series of Pyrimidine Biosynthesis Inhibitors That Boost the Antiviral Interferon Response.
Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.00383-17. Print 2017 Oct.
6
Loss of Sendai virus C protein leads to accumulation of RIG-I immunostimulatory defective interfering RNA.
J Gen Virol. 2017 Jun;98(6):1282-1293. doi: 10.1099/jgv.0.000815. Epub 2017 Jun 20.
7
Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell.
J Virol. 2016 Jul 27;90(16):7552-7566. doi: 10.1128/JVI.00807-16. Print 2016 Aug 15.
8
Comparative analysis of viral RNA signatures on different RIG-I-like receptors.
Elife. 2016 Mar 24;5:e11275. doi: 10.7554/eLife.11275.
10
Quantitative characterization of defective virus emergence by deep sequencing.
J Virol. 2014 Mar;88(5):2623-32. doi: 10.1128/JVI.02675-13. Epub 2013 Dec 18.

本文引用的文献

2
Application of next-generation sequencing technologies in virology.
J Gen Virol. 2012 Sep;93(Pt 9):1853-1868. doi: 10.1099/vir.0.043182-0. Epub 2012 May 30.
3
Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1907-12. doi: 10.1073/pnas.1116168109. Epub 2012 Jan 24.
4
Global landscape of HIV-human protein complexes.
Nature. 2011 Dec 21;481(7381):365-70. doi: 10.1038/nature10719.
5
Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production.
Mol Cell Proteomics. 2012 Apr;11(4):M111.015313. doi: 10.1074/mcp.M111.015313. Epub 2011 Dec 15.
6
The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein.
J Gen Virol. 2012 Jan;93(Pt 1):113-118. doi: 10.1099/vir.0.035485-0. Epub 2011 Sep 14.
7
Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses.
Mol Cell Proteomics. 2011 Dec;10(12):M110.007443. doi: 10.1074/mcp.M110.007443. Epub 2011 Sep 12.
8
Extending KNIME for next-generation sequencing data analysis.
Bioinformatics. 2011 Oct 15;27(20):2907-9. doi: 10.1093/bioinformatics/btr478. Epub 2011 Aug 27.
9
Virus-host protein interactions in RNA viruses.
Microbes Infect. 2010 Dec;12(14-15):1134-43. doi: 10.1016/j.micinf.2010.09.001. Epub 2010 Sep 9.
10
Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16303-8. doi: 10.1073/pnas.1005077107. Epub 2010 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验