Suppr超能文献

基于连接的人类额极的弥散张量成像分区。

Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging.

机构信息

Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.

出版信息

J Neurosci. 2013 Apr 17;33(16):6782-90. doi: 10.1523/JNEUROSCI.4882-12.2013.

Abstract

The human frontal pole (FP) approximately corresponds to Brodmann's area 10 and is a highly differentiated cortical area with unique cytoarchitectonic characteristics. However, its functional diversity is highly suggestive of the existence of functional subregions. Based on anatomical connection patterns derived from diffusion tensor imaging data, we applied a spectral clustering algorithm to parcellate the human right FP into orbital (FPo), lateral (FPl), and medial (FPm) subregions. This parcellation scheme was validated by corresponding analyses of the left FP and right FP in another independent dataset. Both visual observation and quantitative comparison of the anatomical connection patterns of the three FP subregions revealed that the FPo showed greater connection probabilities to brain regions of the social emotion network (SEN), including the orbitofrontal cortex, temporal pole, and amygdala, the FPl showed stronger connections to the dorsolateral prefrontal cortex of the cognitive processing network (CPN), and the FPm showed stronger connections to brain areas of the default mode network (DMN), including the anterior cingulate cortex and medial prefrontal cortex. We further analyzed the resting-state functional connectivity patterns of the three FP subregions. Consistent with the findings of anatomical connection analyses, the FPo was functionally correlated with the SEN, the FPl was correlated with the CPN, and the FPm was correlated with the DMN. These findings suggest that the human FP includes three separable subregions with different anatomical and functional connectivity patterns and that these subregions are involved in different brain functional networks and serve different functions.

摘要

人类额极(FP)大约对应于布罗德曼区 10 区,是一个具有独特细胞构筑特征的高度分化的皮质区。然而,其功能多样性强烈提示存在功能亚区。基于从弥散张量成像数据得出的解剖连接模式,我们应用谱聚类算法将人类右侧 FP 划分为眶部(FPo)、外侧部(FPl)和内侧部(FPm)三个亚区。这种分区方案通过对另一个独立数据集的左侧 FP 和右侧 FP 的相应分析得到了验证。对三个 FP 亚区的解剖连接模式的视觉观察和定量比较均表明,FPo 与社会情感网络(SEN)的脑区具有更高的连接概率,包括眶额皮质、颞极和杏仁核;FPl 与认知处理网络(CPN)的背外侧前额叶皮质具有更强的连接;FPm 与默认模式网络(DMN)的脑区具有更强的连接,包括前扣带皮质和内侧前额叶皮质。我们进一步分析了三个 FP 亚区的静息态功能连接模式。与解剖连接分析的结果一致,FPo 与 SEN 功能相关,FPl 与 CPN 相关,FPm 与 DMN 相关。这些发现表明,人类 FP 包括三个具有不同解剖和功能连接模式的可分离亚区,这些亚区参与不同的大脑功能网络,并具有不同的功能。

相似文献

1
Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging.
J Neurosci. 2013 Apr 17;33(16):6782-90. doi: 10.1523/JNEUROSCI.4882-12.2013.
2
Connectivity-based parcellation of the human frontal polar cortex.
Brain Struct Funct. 2015 Sep;220(5):2603-16. doi: 10.1007/s00429-014-0809-6. Epub 2014 Jun 14.
3
Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging.
Cereb Cortex. 2014 Dec;24(12):3365-78. doi: 10.1093/cercor/bht196. Epub 2013 Aug 7.
4
The selective impairment of resting-state functional connectivity of the lateral subregion of the frontal pole in schizophrenia.
PLoS One. 2015 Mar 6;10(3):e0119176. doi: 10.1371/journal.pone.0119176. eCollection 2015.
5
Co-activation based parcellation of the human frontal pole.
Neuroimage. 2015 Dec;123:200-11. doi: 10.1016/j.neuroimage.2015.07.072. Epub 2015 Aug 5.
6
Subregions of the human superior frontal gyrus and their connections.
Neuroimage. 2013 Sep;78:46-58. doi: 10.1016/j.neuroimage.2013.04.011. Epub 2013 Apr 13.
7
Functional and anatomical connectivity-based parcellation of human cingulate cortex.
Brain Behav. 2018 Aug;8(8):e01070. doi: 10.1002/brb3.1070. Epub 2018 Jul 24.
8
Connectivity-based parcellation of the human posteromedial cortex.
Cereb Cortex. 2014 Mar;24(3):719-27. doi: 10.1093/cercor/bhs353. Epub 2012 Nov 11.
9
10

引用本文的文献

3
What Does the Frontopolar Cortex Contribute to Goal-Directed Cognition and Action?
J Neurosci. 2022 Nov 9;42(45):8508-8513. doi: 10.1523/JNEUROSCI.1143-22.2022.
5
Procrustes Analysis for High-Dimensional Data.
Psychometrika. 2022 Dec;87(4):1422-1438. doi: 10.1007/s11336-022-09859-5. Epub 2022 May 18.
6
Co-expression network analysis of frontal cortex during the progression of Alzheimer's disease.
Cereb Cortex. 2022 Nov 9;32(22):5108-5120. doi: 10.1093/cercor/bhac001.
7
Using diffusion tensor imaging to effectively target TMS to deep brain structures.
Neuroimage. 2022 Apr 1;249:118863. doi: 10.1016/j.neuroimage.2021.118863. Epub 2021 Dec 30.
8
A Graphlet-Based Topological Characterization of the Resting-State Network in Healthy People.
Front Neurosci. 2021 Apr 28;15:665544. doi: 10.3389/fnins.2021.665544. eCollection 2021.
9
Cognitive benefits of exercise interventions: an fMRI activation likelihood estimation meta-analysis.
Brain Struct Funct. 2021 Apr;226(3):601-619. doi: 10.1007/s00429-021-02247-2. Epub 2021 Mar 6.
10
Fine-Grained Topography and Modularity of the Macaque Frontal Pole Cortex Revealed by Anatomical Connectivity Profiles.
Neurosci Bull. 2020 Dec;36(12):1454-1473. doi: 10.1007/s12264-020-00589-1. Epub 2020 Oct 27.

本文引用的文献

1
White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI.
Neuroimage. 2013 Jun;73:239-54. doi: 10.1016/j.neuroimage.2012.06.081. Epub 2012 Jul 23.
2
Short frontal lobe connections of the human brain.
Cortex. 2012 Feb;48(2):273-91. doi: 10.1016/j.cortex.2011.12.001. Epub 2011 Dec 13.
5
Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography.
J Neurosci. 2011 Jan 12;31(2):618-23. doi: 10.1523/JNEUROSCI.2744-10.2011.
6
Cortical input to the frontal pole of the marmoset monkey.
Cereb Cortex. 2011 Aug;21(8):1712-37. doi: 10.1093/cercor/bhq239. Epub 2010 Dec 7.
7
DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.
Front Syst Neurosci. 2010 May 14;4:13. doi: 10.3389/fnsys.2010.00013. eCollection 2010.
8
Contributions of frontopolar cortex to judgments about self, others and relations.
Soc Cogn Affect Neurosci. 2011 Jun;6(3):260-9. doi: 10.1093/scan/nsq033. Epub 2010 May 16.
9
Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum.
J Neurosci. 2010 May 5;30(18):6409-21. doi: 10.1523/JNEUROSCI.5664-09.2010.
10
Is the rostro-caudal axis of the frontal lobe hierarchical?
Nat Rev Neurosci. 2009 Sep;10(9):659-69. doi: 10.1038/nrn2667. Epub 2009 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验