Suppr超能文献

鉴定支配沙漠蝗中央复合体的不同酪胺能和章鱼胺能神经元。

Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria.

机构信息

Fachbereich Biologie, Tierphysiologie, Philipps-Universität Marburg, D-35032 Marburg, Germany.

出版信息

J Comp Neurol. 2013 Jun 15;521(9):2025-41. doi: 10.1002/cne.23269.

Abstract

The central complex is a group of modular neuropils in the insect brain with a key role in visual memory, spatial orientation, and motor control. In desert locusts the neurochemical organization of the central complex has been investigated in detail, including the distribution of dopamine-, serotonin-, and histamine-immunoreactive neurons. In the present study we identified neurons immunoreactive with antisera against octopamine, tyramine, and the enzymes required for their synthesis, tyrosine decarboxylase (TDC) and tyramine β-hydroxylase (TBH). Octopamine- and tyramine immunostaining in the central complex differed strikingly. In each brain hemisphere tyramine immunostaining was found in four neurons innervating the noduli, 12-15 tangential neurons of the protocerebral bridge, and about 17 neurons that supplied the anterior lip region and parts of the central body. In contrast, octopamine immunostaining was present in two bilateral pairs of ascending fibers innervating the upper division of the central body and a single pair of neurons with somata near the esophageal foramen that gave rise to arborizations in the protocerebral bridge. Immunostaining for TDC, the enzyme converting tyrosine to tyramine, combined the patterns seen with the tyramine- and octopamine antisera. Immunostaining for TBH, the enzyme converting tyramine to octopamine, in contrast, was strikingly similar to octopamine immunolabeling. We conclude that tyramine and octopamine act as neurotransmitters/modulators in distinct sets of neurons of the locust central complex with TBH likely being the rate-limiting enzyme for octopamine synthesis in a small subpopulation of TDC-containing neurons.

摘要

中央复合体是昆虫脑中的一组模块化神经丛,在视觉记忆、空间定位和运动控制中起着关键作用。在沙漠蝗中,中央复合体的神经化学组织已经被详细研究,包括多巴胺、血清素和组胺免疫反应神经元的分布。在本研究中,我们鉴定了对章鱼胺、酪胺和合成所需的酶(酪氨酸脱羧酶(TDC)和酪胺β-羟化酶(TBH))有反应的神经元。中央复合体中的章鱼胺和酪胺免疫染色差异显著。在每个脑半球中,酪胺免疫染色发现于 4 个支配神经节的神经元、12-15 个protocerebral 桥的切向神经元和约 17 个供应前唇区域和中央体部分的神经元中。相比之下,章鱼胺免疫染色存在于两个双侧的上行纤维对,它们支配中央体的上部分,并存在于一对靠近食管孔的神经元中,这些神经元产生分枝在 protocerebral 桥中。TDC 的免疫染色,即将酪氨酸转化为酪胺的酶,结合了与酪胺和章鱼胺抗血清所见的模式。相比之下,TBH 的免疫染色,即转化酪胺为章鱼胺的酶,与章鱼胺免疫标记非常相似。我们得出结论,酪胺和章鱼胺作为神经递质/调质在蝗虫中央复合体的不同神经元群中起作用,而 TBH 可能是含有 TDC 的神经元中一小部分章鱼胺合成的限速酶。

相似文献

4
A population of descending tyraminergic/octopaminergic projection neurons of the insect deutocerebrum.
J Comp Neurol. 2019 Apr 15;527(6):1027-1038. doi: 10.1002/cne.24583. Epub 2018 Dec 11.
6
Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system.
Neuron. 2005 Apr 21;46(2):247-60. doi: 10.1016/j.neuron.2005.02.024.
7
Octopaminergic innervation and a neurohaemal release site in the antennal heart of the locust Schistocerca gregaria.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Feb;204(2):131-143. doi: 10.1007/s00359-017-1213-5. Epub 2017 Sep 16.
8
Neuroarchitecture of the central complex of the desert locust: Tangential neurons.
J Comp Neurol. 2020 Apr;528(6):906-934. doi: 10.1002/cne.24796. Epub 2019 Nov 11.
9
Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain.
J Comp Neurol. 1998 Jan 26;390(4):455-69. doi: 10.1002/(sici)1096-9861(19980126)390:4<455::aid-cne1>3.0.co;2-#.

引用本文的文献

1
A computational model for angular velocity integration in a locust heading circuit.
PLoS Comput Biol. 2024 Dec 20;20(12):e1012155. doi: 10.1371/journal.pcbi.1012155. eCollection 2024 Dec.
3
Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):679-720. doi: 10.1007/s00359-023-01616-y. Epub 2023 Mar 17.
4
The sky compass network in the brain of the desert locust.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):641-662. doi: 10.1007/s00359-022-01601-x. Epub 2022 Dec 23.
5
Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust locomotion to nutritional state.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3805-3810. doi: 10.1073/pnas.1813554116. Epub 2019 Feb 11.
7
The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee () Brain.
Front Syst Neurosci. 2017 Oct 24;11:77. doi: 10.3389/fnsys.2017.00077. eCollection 2017.
8
Identification of multiple functional receptors for tyramine on an insect secretory epithelium.
Sci Rep. 2017 Dec;7(1):168. doi: 10.1038/s41598-017-00120-z. Epub 2017 Mar 13.
9
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana.
PLoS One. 2016 Aug 5;11(8):e0160531. doi: 10.1371/journal.pone.0160531. eCollection 2016.
10
Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine.
PLoS One. 2014 Oct 28;9(10):e111314. doi: 10.1371/journal.pone.0111314. eCollection 2014.

本文引用的文献

1
Winning fights induces hyperaggression via the action of the biogenic amine octopamine in crickets.
PLoS One. 2011;6(12):e28891. doi: 10.1371/journal.pone.0028891. Epub 2011 Dec 21.
2
Unraveling navigational strategies in migratory insects.
Curr Opin Neurobiol. 2012 Apr;22(2):353-61. doi: 10.1016/j.conb.2011.11.009. Epub 2011 Dec 9.
3
Central neural coding of sky polarization in insects.
Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):680-7. doi: 10.1098/rstb.2010.0199.
4
Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling.
Nat Neurosci. 2011 Feb;14(2):190-9. doi: 10.1038/nn.2716. Epub 2010 Dec 26.
5
The role of octopamine in locusts and other arthropods.
J Insect Physiol. 2010 Aug;56(8):854-67. doi: 10.1016/j.jinsphys.2010.05.018. Epub 2010 Jun 3.
6
Visual targeting of motor actions in climbing Drosophila.
Curr Biol. 2010 Apr 13;20(7):663-8. doi: 10.1016/j.cub.2010.02.055. Epub 2010 Mar 25.
7
Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior.
Neuron. 2010 Mar 11;65(5):670-81. doi: 10.1016/j.neuron.2010.01.032.
8
State-dependent performance of optic-flow processing interneurons.
J Neurophysiol. 2009 Dec;102(6):3606-18. doi: 10.1152/jn.00395.2009. Epub 2009 Oct 7.
9
Transformation of polarized light information in the central complex of the locust.
J Neurosci. 2009 Sep 23;29(38):11783-93. doi: 10.1523/JNEUROSCI.1870-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验