Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.
Institute of Molecular Biology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3805-3810. doi: 10.1073/pnas.1813554116. Epub 2019 Feb 11.
Adrenergic signaling profoundly modulates animal behavior. For example, the invertebrate counterpart of norepinephrine, octopamine, and its biological precursor and functional antagonist, tyramine, adjust motor behavior to different nutritional states. In larvae, food deprivation increases locomotor speed via octopamine-mediated structural plasticity of neuromuscular synapses, whereas tyramine reduces locomotor speed, but the underlying cellular and molecular mechanisms remain unknown. We show that tyramine is released into the CNS to reduce motoneuron intrinsic excitability and responses to excitatory cholinergic input, both by tyramine receptor activation and by downstream decrease of L-type calcium current. This central effect of tyramine on motoneurons is required for the adaptive reduction of locomotor activity after feeding. Similarly, peripheral octopamine action on motoneurons has been reported to be required for increasing locomotion upon starvation. We further show that the level of tyramine-β-hydroxylase (TBH), the enzyme that converts tyramine into octopamine in aminergic neurons, is increased by food deprivation, thus selecting between antagonistic amine actions on motoneurons. Therefore, octopamine and tyramine provide global but distinctly different mechanisms to regulate motoneuron excitability and behavioral plasticity, and their antagonistic actions are balanced within a dynamic range by nutritional effects on TBH.
肾上腺素能信号深刻地调节动物行为。例如,去甲肾上腺素、章鱼胺及其生物前体和功能拮抗剂酪胺在无脊椎动物中的对应物,可根据不同的营养状态来调节运动行为。在幼虫中,食物剥夺通过章鱼胺介导的神经肌肉突触结构可塑性增加运动速度,而酪胺降低运动速度,但潜在的细胞和分子机制尚不清楚。我们发现,酪胺被释放到中枢神经系统中,通过激活酪胺受体和下游 L 型钙电流的减少,降低运动神经元的内在兴奋性和对兴奋性胆碱能输入的反应,从而降低运动神经元的兴奋性。这种酪胺对运动神经元的中枢作用是在进食后适应性降低运动活性所必需的。同样,据报道,外周章鱼胺对运动神经元的作用对于饥饿时增加运动是必需的。我们进一步表明,在胺能神经元中将酪胺转化为章鱼胺的酶——酪胺-β-羟化酶(TBH)的水平在食物剥夺时增加,从而在运动神经元上的拮抗胺作用之间进行选择。因此,章鱼胺和酪胺提供了全局但明显不同的机制来调节运动神经元兴奋性和行为可塑性,并且它们的拮抗作用通过 TBH 对营养的影响在动态范围内达到平衡。