Suppr超能文献

在开放挑战环境中开发用于乳腺癌生存预测的模型。

Development of a prognostic model for breast cancer survival in an open challenge environment.

机构信息

Center for Computational Biology and Bioinformatics and Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

Sci Transl Med. 2013 Apr 17;5(181):181ra50. doi: 10.1126/scitranslmed.3005974.

Abstract

The accuracy with which cancer phenotypes can be predicted by selecting and combining molecular features is compromised by the large number of potential features available. In an effort to design a robust prognostic model to predict breast cancer survival, we hypothesized that signatures consisting of genes that are coexpressed in multiple cancer types should correspond to molecular events that are prognostic in all cancers, including breast cancer. We previously identified several such signatures--called attractor metagenes--in an analysis of multiple tumor types. We then tested our attractor metagene hypothesis as participants in the Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge. Using a rich training data set that included gene expression and clinical features for breast cancer patients, we developed a prognostic model that was independently validated in a newly generated patient data set. We describe our model, which was based on three attractor metagenes associated with mitotic chromosomal instability, mesenchymal transition, or lymphocyte-based immune recruitment.

摘要

通过选择和组合分子特征来预测癌症表型的准确性受到可用潜在特征数量的限制。为了设计一种稳健的预后模型来预测乳腺癌的生存,我们假设由在多种癌症类型中共同表达的基因组成的特征应该对应于所有癌症(包括乳腺癌)的预后分子事件。我们之前在对多种肿瘤类型的分析中发现了几个这样的特征——称为吸引子基因组合。然后,我们作为 Sage Bionetworks-DREAM 乳腺癌预后挑战赛的参与者来测试我们的吸引子基因组合假说。我们使用了一个包含乳腺癌患者基因表达和临床特征的丰富训练数据集,开发了一个预后模型,并在一个新生成的患者数据集上进行了独立验证。我们描述了我们的模型,该模型基于与有丝分裂染色体不稳定、间充质转化或基于淋巴细胞的免疫募集相关的三个吸引子基因组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验