Suppr超能文献

一种用于检测海龟层状核中双耳时间差的电路。

A circuit for detection of interaural time differences in the nucleus laminaris of turtles.

作者信息

Willis Katie L, Carr Catherine E

机构信息

University of Maryland, Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, Neuroscience and Cognitive Science Graduate Program, College Park, MD 20742, USA

University of Maryland, Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, Neuroscience and Cognitive Science Graduate Program, College Park, MD 20742, USA.

出版信息

J Exp Biol. 2017 Nov 15;220(Pt 22):4270-4281. doi: 10.1242/jeb.164145. Epub 2017 Sep 25.

Abstract

The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles.

摘要

根据耳蜗微音器电位测定(韦弗和弗农,1956a),海龟的生理听觉范围约为50 - 1000赫兹。这些低频会限制声音定位,尤其是在红耳龟中,红耳龟是一种头部较小且中耳孤立的淡水龟。为了确定这些海龟是否对双耳时间差(ITD)敏感,我们研究了它们听觉脑干核团的连接和生理学特性。束路追踪实验表明,第八对脑神经分叉后终止于一级大细胞神经核(NM)和角状核(NA),并且NM双侧投射到层状核(NL)。由于NL从两侧接收输入,我们开发了一种离体头部标本,以检查对双耳听觉刺激的反应。大细胞神经核和层状核单元对100至600赫兹的频率有反应,并对听觉刺激可靠地锁相。NL的反应是双耳的,并且对ITD敏感。特征延迟测量显示最佳ITD约为±200微秒,并且NL神经元的特征相位通常接近0,这与双耳兴奋一致。因此,海龟在其生理范围内编码ITD,并且它们的听觉脑干核团与其他爬行动物具有相似的连接和细胞类型。

相似文献

1
A circuit for detection of interaural time differences in the nucleus laminaris of turtles.
J Exp Biol. 2017 Nov 15;220(Pt 22):4270-4281. doi: 10.1242/jeb.164145. Epub 2017 Sep 25.
2
A circuit for detection of interaural time differences in the brain stem of the barn owl.
J Neurosci. 1990 Oct;10(10):3227-46. doi: 10.1523/JNEUROSCI.10-10-03227.1990.
3
Coincidence detection by binaural neurons in the chick brain stem.
J Neurophysiol. 1993 Apr;69(4):1197-211. doi: 10.1152/jn.1993.69.4.1197.
4
Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
Front Neural Circuits. 2015 Aug 20;9:43. doi: 10.3389/fncir.2015.00043. eCollection 2015.
5
Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
Eur J Neurosci. 1998 Nov;10(11):3438-50. doi: 10.1046/j.1460-9568.1998.00353.x.
6
Detection of interaural time differences in the alligator.
J Neurosci. 2009 Jun 24;29(25):7978-90. doi: 10.1523/JNEUROSCI.6154-08.2009.
7
Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
J Neurosci. 2019 May 15;39(20):3882-3896. doi: 10.1523/JNEUROSCI.2989-18.2019. Epub 2019 Mar 18.
9
Resolution of interaural time differences in the avian sound localization circuit-a modeling study.
Front Comput Neurosci. 2014 Aug 26;8:99. doi: 10.3389/fncom.2014.00099. eCollection 2014.
10

引用本文的文献

1
Central projections of auditory nerve fibers in the western rat snake (Pantherophis obsoletus).
J Comp Neurol. 2023 Aug;531(12):1261-1273. doi: 10.1002/cne.25495. Epub 2023 May 28.
2
Inhibitory Neural Circuits in the Mammalian Auditory Midbrain.
J Exp Neurosci. 2018 Dec 12;12:1179069518818230. doi: 10.1177/1179069518818230. eCollection 2018.

本文引用的文献

1
Animals and ICE: meaning, origin, and diversity.
Biol Cybern. 2016 Oct;110(4-5):237-246. doi: 10.1007/s00422-016-0702-x.
2
Coupled ears in lizards and crocodilians.
Biol Cybern. 2016 Oct;110(4-5):291-302. doi: 10.1007/s00422-016-0698-2. Epub 2016 Oct 12.
3
Evolutionary trends in directional hearing.
Curr Opin Neurobiol. 2016 Oct;40:111-117. doi: 10.1016/j.conb.2016.07.001. Epub 2016 Jul 22.
4
Role of intracranial cavities in avian directional hearing.
Biol Cybern. 2016 Oct;110(4-5):319-331. doi: 10.1007/s00422-016-0688-4. Epub 2016 May 21.
5
What the Toadfish Ear Tells the Toadfish Brain About Sound.
Adv Exp Med Biol. 2016;877:197-226. doi: 10.1007/978-3-319-21059-9_10.
6
The natural history of sound localization in mammals--a story of neuronal inhibition.
Front Neural Circuits. 2014 Oct 1;8:116. doi: 10.3389/fncir.2014.00116. eCollection 2014.
7
Using genes as characters and a parsimony analysis to explore the phylogenetic position of turtles.
PLoS One. 2013 Nov 21;8(11):e79348. doi: 10.1371/journal.pone.0079348. eCollection 2013.
9
A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals.
J Neurosci Methods. 2013 Apr 30;215(1):139-55. doi: 10.1016/j.jneumeth.2013.02.020. Epub 2013 Mar 6.
10
Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
Neuroscience. 2013 May 1;237:243-54. doi: 10.1016/j.neuroscience.2013.01.046. Epub 2013 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验