Ångström Laboratory, Department of Chemistry, Uppsala University, Box 523, SE-75120 Uppsala, Sweden.
Inorg Chem. 2013 May 6;52(9):5128-37. doi: 10.1021/ic400009m. Epub 2013 Apr 18.
A series of homoleptic bis(tridentate) Ru(L)2 (1, 3) and heteroleptic Ru(L)(dqp) complexes (2, 4) [L = dqxp (1, 2) or dNinp (3, 4); dqxp = 2,6-di(quinoxalin-5-yl)pyridine, dNinp = 2,6-di(N-7-azaindol-1-yl)pyridine, dqp = 2,6-di(quinolin-8-yl)pyridine] was prepared and in the case of 2 and 4 structurally characterized. The presence of dqxp and dNinp in 1-4 result in anodically shifted oxidation potentials of the Ru(3+/2+) couple compared to that of the archetypical Ru(dqp)2 (5), most pronounced for Ru(dqxp)2 (1) with a shift of +470 mV. These experimental findings are corroborated by DFT calculations, which show contributions to the complexes' HOMOs by the polypyridine ligands, thereby stabilizing the HOMOs and impeding electron extraction. Complex 3 exhibits an unusual electronic absorption spectrum with its lowest energy maximum at 382 nm. TD-DFT calculations suggest that this high-energy transition is caused by a localization of the LUMO on the central pyridine fragments of the dNinp ligands in 3, leaving the lateral azaindole units merely spectator fragments. The opposite is the case in 1, where the LUMO experiences large stabilization by the lateral quinoxalines. Owing to the differences in LUMO energies, the complexes' reduction potentials differ by about 900 mV [E(1/2)(1(2+/1+)) = -1.17 V, E(c,p)(3(2+/1+)) = -2.06 V vs Fc(+/0)]. As complexes 1-4 exhibit similar excited state energies of around 1.80 V, the variations of the lateral heterocycles allow the tuning of the complexes' excited state oxidation strengths over a range of 900 mV. Complex 1 is the strongest excited state oxidant of the series, exceeding even Ru(bpy)3 by more than 200 mV. At room temperature, complex 3 is nonemissive, whereas complexes 1, 2, and 4 exhibit excited state lifetimes of 255, 120, and 1570 ns, respectively. The excited state lifetimes are thus somewhat shortened compared to that of 5 (3000 ns) but still acceptable to qualify the complexes as photosensitizers in light-induced charge-transfer schemes, especially for those that require high oxidative power.
一系列同配位双(三齿配体)Ru(L)2(1、3)和杂配位Ru(L)(dqp)配合物(2、4)[L = dqxp(1、2)或 dNinp(3、4);dqxp = 2,6-二(喹喔啉-5-基)吡啶,dNinp = 2,6-二(N-7-氮杂吲哚-1-基)吡啶,dqp = 2,6-二(喹啉-8-基)吡啶]被制备并在 2 和 4 的情况下进行了结构表征。与典型的Ru(dqp)2(5)相比,1-4 中 dqxp 和 dNinp 的存在导致 Ru(3+/2+)对的氧化电势向阳极移动,其中Ru(dqxp)2(1)的移动最大,为+470 mV。这些实验结果得到了密度泛函理论(DFT)计算的证实,该计算表明多吡啶配体对配合物 HOMO 的贡献,从而稳定了 HOMO 并阻碍了电子提取。配合物 3 表现出异常的电子吸收光谱,其最低能量最大值位于 382nm。TD-DFT 计算表明,这种高能跃迁是由于 LUMO 在 3 中 dNinp 配体的中心吡啶片段上的定位引起的,使得侧向氮杂吲哚单元仅作为旁观片段。在 1 中情况则相反,其中 LUMO 受到侧向喹喔啉的强烈稳定。由于 LUMO 能量的差异,配合物的还原电势相差约 900 mV[E(1/2)(1(2+/1+)) = -1.17 V,E(c,p)(3(2+/1+)) = -2.06 V vs Fc(+/0)]。由于 1-4 表现出相似的激发态能量约为 1.80 V,因此侧基杂环的变化允许在 900 mV 的范围内调节配合物的激发态氧化强度。配合物 1 是该系列中最强的激发态氧化剂,甚至超过了Ru(bpy)3超过 200 mV。在室温下,3 是非发光的,而 1、2 和 4 分别表现出 255、120 和 1570 ns 的激发态寿命。与 5(3000 ns)相比,激发态寿命略有缩短,但仍足以将这些配合物鉴定为光诱导电荷转移方案中的光致剂,特别是对于那些需要高氧化能力的方案。