Yaltseva Polina, Maisuradze Tamar, Prescimone Alessandro, Kupfer Stephan, Wenger Oliver S
Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland.
Institute of Physical Chemistry, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, Jena 07743, Germany.
J Am Chem Soc. 2025 Aug 13;147(32):29444-29456. doi: 10.1021/jacs.5c09616. Epub 2025 Jul 30.
Co complexes have recently become an important focus in photophysics and photoredox catalysis due to metal-centered excited states with strong oxidizing properties. Optimizing chelate ligand bite angles is a widely used strategy to strengthen metal-ligand interactions in coordination complexes, with the resulting enhanced ligand fields often contributing to extended excited-state lifetimes that are advantageous for photochemical applications. We demonstrate that bite-angle optimization exerts the opposite effect on Co polypyridines compared to previously studied transition metal complexes, as polypyridine ligands function as π-donors to Co rather than π-acceptors. Our findings reveal two counterintuitive paradigms: while bite-angle optimization weakens the ligand field in Co complexes, the resulting lower-energy metal-centered excited states can be accompanied by extended excited-state lifetimes, driven by increased rigidification through intramolecular π-π interactions. These insights, along with additional experiments investigating the possibility of photoreactions from higher excited states, advance the current understanding of the photophysics and photochemistry of first-row transition metal complexes and highlight key distinctions from the more extensively studied photoactive complexes of second- and third-row transition metals.
由于具有强氧化性的金属中心激发态,钴配合物最近已成为光物理和光氧化还原催化领域的一个重要研究焦点。优化螯合配体的咬合角是一种广泛应用的策略,用于加强配位配合物中的金属 - 配体相互作用,由此产生的增强配体场通常有助于延长激发态寿命,这对光化学应用有利。我们证明,与先前研究的过渡金属配合物相比,咬合角优化对钴多吡啶配合物产生相反的效果,因为多吡啶配体对钴起π供体而非π受体的作用。我们的研究结果揭示了两个违反直觉的范例:虽然咬合角优化会削弱钴配合物中的配体场,但由此产生的能量较低的金属中心激发态可能伴随着激发态寿命的延长,这是由分子内π - π相互作用导致的刚性增加所驱动的。这些见解,以及研究更高激发态光反应可能性的额外实验,推进了目前对第一排过渡金属配合物光物理和光化学的理解,并突出了与第二排和第三排过渡金属中研究更广泛的光活性配合物的关键区别。