Birck Nanotechnology Center & School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Nanoscale. 2013 Jun 7;5(11):4729-36. doi: 10.1039/c3nr34088k. Epub 2013 Apr 18.
Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.
理解病毒物质特性(刚度、强度、电荷密度、附着力、水合作用、粘度等)、结构(蛋白质亚单位、基因组、表面受体、附属物)和功能(自组装、稳定性、分解、感染)之间的关系在物理病毒学和纳米医学中具有重要意义。传统的原子力显微镜(AFM)方法仅从纳米压痕的少数几个点测量整个病毒的单个物理特性,如刚度,这严重限制了结构-特性-功能关系的研究。我们提出了一种体外动态 AFM 技术,该技术在间歇接触模式下运行,合成非谐洛伦兹力激发的 AFM 悬臂梁,以纳米分辨率定量绘制单个 φ29 噬菌体的局部机电力梯度、附着力和水化层粘度。此外,还研究了整个 φ29 噬菌体的物质特性的变化,这些变化是由其外壳的局部破坏引起的,这为噬菌体减压提供了证据。该技术显著推广了最近的多谐理论(A. Raman 等人,Nat. Nanotechnol.,2011,6,809-814),并能够在体外对弱键合病毒和具有复杂结构的纳米颗粒进行高分辨率定量映射,而使用标准 AFM 技术则无法观察到这些特性。