Bornschlögl Thomas, Rief Matthias
Department of Physics, TU Munich, Garching, Germany.
Methods Mol Biol. 2011;783:233-50. doi: 10.1007/978-1-61779-282-3_13.
Over the past few years, atomic force microscopy (AFM) became a prominent tool to study the mechanical properties of proteins and protein interactions on a single-molecule level. AFM together with other mechanical, single-molecule manipulating techniques (Bustamante et al., Nat Rev Mol Cell Biol 1:130-136, 2000) made it possible to probe biological molecules in a way that is complementary to single-molecule methods using chemicals or temperature as a denaturant (Borgia et al., Annu Rev Biochem 77:101-125, 2008). For example, AFM offered new insights into the process of protein folding and unfolding by probing single proteins with mechanical forces. Since many proteins fulfill mechanical function or are exerted to mechanical forces in their natural environment, AFM allows to target physiologically relevant questions. Although the number of proteins unfolded with AFM continually increases (Linke and Grutzner, Pflugers Arch 456:101-115, 2008; Zhuang and Rief, Curr Opin Struct Biol 13:88-97, 2003; Clausen-Schaumann et al., Curr Opin Chem Biol 4:524-530, 2000; Rounsevell et al., Methods 34:100-111, 2004), the total number of proteins studied so far is still relatively small (Oberhauser and Carrion-Vazquez, J Biol Chem 283:6617-6621, 2008). This chapter aims at giving protocol-like instructions for people who are actually getting started using AFM to study mechanical protein unfolding or refolding. The instruction includes different approaches to produce polyproteins or modular protein chains which are commonly used to screen for true single-molecule AFM data traces. Also, the basic principles for data collection with AFM and the basic data analysis methods are explained. For people who want to study proteins that unfold at small forces or for people who want to study protein folding which also occurs typically at small forces (<30 pN), an averaging technique is explained, allowing to increase the force resolution in this regime. For topics that would go beyond the scope of this chapter - as, for example, the details about different cantilever calibration methods - references are provided.
在过去几年中,原子力显微镜(AFM)成为研究蛋白质机械性能以及单分子水平上蛋白质相互作用的重要工具。AFM与其他机械单分子操纵技术(Bustamante等人,《自然综述:分子细胞生物学》1:130 - 136,2000年)相结合,使得以一种与使用化学物质或温度作为变性剂的单分子方法互补的方式探测生物分子成为可能(Borgia等人,《生物化学年度评论》77:101 - 125,2008年)。例如,AFM通过用机械力探测单个蛋白质,为蛋白质折叠和去折叠过程提供了新的见解。由于许多蛋白质在其天然环境中履行机械功能或受到机械力作用,AFM能够针对生理相关问题进行研究。尽管用AFM展开的蛋白质数量不断增加(Linke和Grutzner,《普弗吕格尔斯文献》456:101 - 115,2008年;Zhuang和Rief,《结构生物学当前观点》13:88 - 97,2003年;Clausen - Schaumann等人,《化学生物学当前观点》4:524 - 530,2000年;Rounsevell等人,《方法》34:100 - 111,2004年),但迄今为止研究的蛋白质总数仍然相对较少(Oberhauser和Carrion - Vazquez,《生物化学杂志》283:6617 - 6621,2008年)。本章旨在为刚开始使用AFM研究蛋白质机械去折叠或重折叠的人员提供类似方案的指导。该指导包括产生多蛋白或模块化蛋白链的不同方法,这些方法常用于筛选真正的单分子AFM数据轨迹。此外,还解释了使用AFM进行数据收集的基本原理和基本数据分析方法。对于想要研究在小力作用下展开的蛋白质的人员或想要研究通常也在小力(<30 pN)下发生的蛋白质折叠的人员,介绍了一种平均技术,可提高该力范围内的力分辨率。对于超出本章范围的主题——例如不同悬臂校准方法的细节——提供了参考文献。